THIRD SEMESTER

24MA1	301	PROB	ABILIT	Y DIS	TRIB	UTION	S AND	L	Т	Р	J S C Year of Introduction						
			CON	NPLE	X ANA	ALYSIS	5	3	1	0	0	3	4	20	24		
Preamble: This course introduces the concept of discrete, continuous probability distributions, testing of hypothesis, complex differentiation and complex integration. The concepts discussed here are widely used in the modeling and analysis of a wide range of physical phenomena and has got application across all branches of engineering. After completing this course, students will acquire the ability to utilize the above concepts for solving mathematical problems more efficiently.																	
Prerequisite: A basic course in probability distributions and complex numbers.																	
Course Outcomes: After the completion of the course the student will be able to																	
CO1 Apply the concept and properties of discrete probability distributions in evaluating the required probabilities (Apply level).																	
CO2	Apply varia	7 prop bles to	erties o analy	and i yse su	impor itable	rtant r. rando	nodels om phe	s of enoi	co nei	nti na	nu (Ar	ious oply	s ra le	andom vel).			
CO3	Perfo popu (Appl	rm sta lation y level)	atistic based	al inf on at	èrenc tribut	tes of s	ncerni sample	ng es d	ch rav	ara vn :	act fro	eris m tl	tic he	s of a popula	tion		
CO4	Apply for so	v Cauc lving p	hy-Rie problei	emann ms in	i equa varioi	tions a us eng	and th ineerir	e co 1g d	onc lorr	ept nair	of s	f haı (App	rm oly	onic fu level).	nctions		
CO5	Comp theore	oute di em (Ap	fferen ply lev	t type: el).	s of co	ontour	integr	als	us	ing	C	auc	hy	's resid	ue		
					CO -	PO MA	PPING										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	P)9	PO	10	PO11	PO12		
C01	3	2			1						1				1		
CO2	3	2								_	1				1		
CO3	3	2			1					_	1				1		
C04	3	2			1					_	1				1		
005	3	2	A		1 4 D-44	-					1				1		
			Asses	Smen	t Patt			гу (•+ Т	'00	npo 1a	ne	nt					
Blo	om's (Catego	ry	Те	st1	Te	st 2	Of to	the	15 21 5		E E	nd Exa	Semes	ter ion		
Remen	nber			~			/		~					~			
Under	stand			~					~					~			
Apply				~					/					~			
Analys	e								v								
Evalua	ate								v	_							
Create									V								

Course		Mark D	istribution of	f CIA						
Structur [L-T-P-J	, re J]	Attenuance	Assignment	ent Test-1 Test-2			Total Marks			
3-1-0-0	-	5	15	10	10		40			
		Total	Marks distrib	ution						
Total M	larks	CIA (Mark	s) ESE	(Marks)]	ESE Duration			
100		40	(50			3 hours			
PATTERN			ESE Marks							
PATTERN PART A PART B ESE Marks										
	10	Questions,	2 questions	will be	give	n				
PATTERN 1	10 each carrie Mark mark	Questions, question es 2 marks s: (2x10 =20 s)	2 questions from each a which 1 qu be answered can have a subdivisions Each ques marks. Marks: (5x8 = Time: 3 hour	will be module, lestion . Each o maximu tion ca = 40 ma	giver out shou quest im o rries rks)	n of ion f 2 8	60			

MODULE I: (Discrete probability distributions)

(Text-1: Relevant topics from sections 3.1-3.4, 3.6, 5.1)

Random variables, Discrete random variables, Probability mass function, Cumulative distribution function, Mean and variance, Discrete probability distributions, Binomial distribution, Poisson distribution, Mean and variance of Binomial and Poisson distributions.

MODULE II: (Continuous probability distributions)

(Text-1: Relevant topics from sections 4.1-4.4, 3.6)

Continuous random variables, Cumulative distribution function, Probability density function, Continuous probability distributions, Uniform distribution, Mean and variance of uniform distributions, Normal distribution.

MODULE III: (Test of Hypothesis)

(Text-1: Relevant topics from sections 5.4, 3.6, 5.1,7.2, 8.1, 8.3, 9.1-9.2,9.4)

Population and samples, Sampling distribution of the mean and proportion (for large

samples only), Confidence interval for single mean and single proportions (for large

samples only). Test of Hypothesis: large sample test for single mean and single proportion, Equality of means, small sample t-tests for single mean of normal population, Equality of means (for independent samples from two normal populations with equal variance).

MODULE IV: (Complex differentiation)

(Text 2: Relevant portions of sections 13.3,13.4)

Circles and disks, half planes, Complex functions, Limit, Continuity and derivatives, Analytic functions, Cauchy-Riemann equations, Laplace equation, Harmonic functions, Harmonic conjugate functions.

MODULE V: (Complex Integration)

(Text 2- Relevant topics from sections 14.1,14.2,14.3,14.4,15.4,16.1,16.2,16.3) Cauchy's integral theorem for simply connected domains (without proof), Cauchy's Integral formula for simply connected domains (without proof), Cauchy's Integral formula for derivatives of analytic function, Taylor and Maclaurin series, Laurent's series, Poles and Residues, Evaluation of residues, Cauchy's residue theorem.

Text books

- 1. Jay L. Devore, Probability and Statistics for Engineering and the Sciences, 8th edition, Cengage, 2012.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10thEdition, John Wiley & Sons, 2016.

References

- 1. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012
- 2. Hossein Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research, 2014
- 3. Sheldon M. Ross, Introduction to probability and statistics for engineers and scientists, 4th edition, Elsevier, 2009.
- 4. T. Veera Rajan, Probability, Statistics and Random processes, Tata McGraw-Hill, 2008
- Prof. Pranav Haridas, Complex Analysis, Kerala School of Mathematics, [NPTEL], https://nptel.ac.in/courses/111106141 (Relevant sections).

COURSE CONTENTS AND LECTURE SCHEDULE										
No.		No. of Hours								
	MODULE 1 [9 hours]	1								
1.1	Discrete random variables and their probability distributions	1								
1.2	Discrete random variables and their probability distributions (Continued)	1								
1.3	Expectation, mean and variance	1								
1.4	Binomial distribution-mean and variance	1								
1.5	Problems on Binomial distribution	1								
1.6	Problems on Binomial distribution (continued)	1								
1.7	Poisson distribution- Poisson approximation to binomial	1								
1.8	Poisson distribution- mean and variance	1								
1.9	Problems on Poisson distribution	1								
MODULE II [9 hours]										
2.1	Continuous random variables and their probability distributions	1								
2.2	Continuous random variables and their probability distributions(continued)	1								
2.3	Expectation, mean and variance	1								
2.4	Expectation, mean and variance(continued)	1								
2.5	Uniform distribution – derivation of mean and variance	1								
2.6	Problems on Uniform distribution	1								
2.7	Normal distribution	1								
2.8	Problems on Normal distribution	1								
2.9	Problems on Normal distribution (continued)	1								
	MODULE III [9 hours]									
3.1	Population and samples, Sampling distribution of the mean and proportion (for large samples only)	1								
3.2	Confidence interval for single mean	1								
3.3	Confidence interval for single proportion	1								
3.4	Test of Hypotheses: Large sample test for single mean	1								
3.5	Large sample test for single proportion	1								

3.6	Large sample test for equality of means	1
3.7	Small sample tests for single mean of normal population	1
3.8	Small sample t-tests for equality of means	1
3.9	Small sample t-tests for equality of means (continued)	1
	MODULE IV [9 hours]	
4.1	Circles and disks, half planes, Complex functions	1
4.2	Limit and continuity of complex functions	1
4.3	Derivatives of complex functions	1
4.4	Analytic functions	1
4.5	Cauchy-Riemann equations	1
4.6	Cauchy-Riemann equations(continued)	1
4.7	Harmonic functions	1
4.8	Finding harmonic conjugate	1
4.9	Finding harmonic conjugate(continued)	1
	MODULE V [9 hours]	
5.1	Cauchy's integral theorem (without proof) on simply connected domain	1
5.2	Cauchy's Integral formula (without proof)	1
5.3	Cauchy's Integral formula for derivatives of analytic functions	1
5.4	Taylor's series and Maclaurin series	1
5.5	Laurent series	1
5.6	Poles and Residues	1
5.7	Evaluation of residues	1
5.8	Evaluation of residues (continued)	1
5.9	Cauchy's residue theorem	1

	CO Assessment Sample Questions
1	 A certain hospital usually admits 50 patients per day. On the average 3 patients in 100 require special facilities found in special rooms. On the morning of a certain day it is found that there are three such rooms available. Assuming that 50 patients will be admitted find the probability that more than 3 patients will require such special rooms. Using CAS, determine the probability of rolling a sum of 7 or 11 when rolling two fair six-sided dice? Calculate the mean and variance of the probability distribution, generate random samples, and visualize the probability mass function.
	3. Team Work: Determine the probability of obtaining at least two heads when tossing a fair coin three times. Once the team has solved this problem, explore variations such as the probability of obtaining at least two heads when tossing the coin four times, or when using a biased coin with a 70% chance of heads and a 30% chance of tails. Explore these variations as a team and discuss the changes in probabilities.
2	 A manufacturer knows from experience that the resistance of resistors he produces is normal with mean μ = 150Ω and standard deviation σ = 5Ω. What percentage of the resistors will have resistance between 148 Ω and 152 Ω? Between 140 Ω and 160 Ω? A spinner selects a number X randomly from the interval [0, 2π). The probability of selecting any number between 0 and x is proportional to the length of the interval [0, x]. Find the density function of X. What is the probability that the spinner selects a number between 2 and 3? Verify the answer using CAS. Team Work: Calculate the probability that a normally distributed random variable with a mean of 75 and a standard deviation of 10 falls between 70 and 80? Additionally, generate random samples from this distribution and visualize the probability density function using CAS.

- 1. A manufacturer of nickel-hydrogen batteries randomly selects 100 nickel plates for test cells, cycles them a specified number of times, and determines that 14 of the plates have blistered. Does this provide compelling evidence for concluding that more than 10% of all plates blister under such circumstances? State and test the approximate hypothesis using a significance level of 0.05.
- 2. The mean produce of a sample of 100 fields is 200 lbs per acre with standard deviation of 10 lbs. Another sample of 150 fields gives the mean of 220 lbs with a standard deviation 12 lbs. Can the two samples be considered to have been take from the same population whose standard deviation is 11 lbs? Use 5% level of significance. Solve the problem using CAS and verify your answer.

3. Team Work: Using CAS, perform a hypothesis test to determine if there is a significant difference in the mean blood pressure between a control group and a treatment group. The datasets 'group1' and 'group2' represent the blood pressure measurements of the respective groups. Assume that the data follows a normal distribution and use a significance level of 0.05. Write CAS code to conduct the hypothesis test, calculate the test statistic, p-value, and provide a conclusion

regarding the null hypothesis. Collaborate with your team members, execute the code, and interpret the results. Present your findings, discussing the hypothesis testing procedure and any notable observations made during the activity.

3

	1.	You are analyzing the flow of fluid in a river, and you want to
		understand the behavior of the velocity field. The velocity of the
		fluid is described by a complex function, where the real part
		represents the horizontal component and the imaginary part
		represents the vertical component. Apply the Cauchy-Riemann
		equations to determine the conditions under which the fluid
		flow is both irrotational (zero curl) and incompressible (zero
		divergence).
	2.	You are analyzing the flow of heat in a two-dimensional object,
		and the temperature distribution within the object is described
		by a harmonic function. For a particular case, let's consider a
		rectangular metal plate where the temperature distribution is
4		given by $(x, y) = sin(x)cos(y)$, where (x, y) represents the spatial
		coordinates. Find the harmonic conjugate of the temperature
		function (x, y) and determine the streamlines of heat flow
		based on the harmonic conjugate. Verify the answer using CAS
	3.	Team Work: What are the critical points and equivalent resistances
		of a
		resistor with a nonlinear resistance described by the
		equation
		$R = a z ^2 + b z + c$, where 'a', 'b', and 'c' are constants and 'z' is a
		complex variable representing the voltage across the
		resistor? Use complex differentiation to analyze the behavior of
		the resistor and find the critical points by differentiating the
		resistance equation with respect to 'z' and setting it equal to
		zero. Finally, substitute the critical points back into the
		resistance equation to determine the corresponding
		equivalent resistances.
	1.	In the study of a particle's motion along a curve, you
		approximate the position function $x(t) = t - 2t + 3t - 1$ using a
		Taylor series expansion. Determine the Taylor series expansion of
		x(t) around t = 2 and use it to approximate the position of the
5		particle at t =
0		2.2 up to the second-degree term.
	2.	The Maclaurin series $\frac{z}{z} = 1 + B z + \frac{B^2}{2} z^2 + \frac{B^3}{3} z^3 + \dots$ defines
		Rernoulli numbers Using undetermined coefficients show
		that ⁿ
		B = -1, B = 1, B = 0, B = -1, B = 0, B = -1. Write a

program 1 2 2 6 3 4 30 5 6 42 for computing *B* using CAS. Team Work: Research and find real-world applications of complex integration using the Cauchy Residue Theorem. Present your findings in a concise report or presentation, highlighting the applications and explaining how the theorem is used in each case.

24ES	T302	C	OVER	RVIEW OF CHEMICAL					Т	Р	J	S	С	Yea Introd	r of luctio
						0								1	n
								2	0	0	0	2	2	20	24
Pream	ble: T	he ai	m of	this	course	e is t	o fan	nilia	rize	e tl	ne	bu	ddi	ing ch	emical
engine	eers to														
chemi	ical in	ldustr	у ор	eratio	ns. T	he s	ubjec	t r	eve	als	k	nov	wle	edge a	about
opera	tions	of in	dustr	ies sı	uch a	is rav	w ma	ater	ials	s a	nd	p	roc	lucts,	unit
opera	tions a	ind pr	ocess	es, er	nginee	ring p	oroble	ms	rel	ate	d t	0 0	pe	rations	s and
marketing strategies currently followed in chemical industries, etc.															
Students will get exposure through industrial visits to any of the															
indus	tries li	ike													
petrol	eum r	efiner	y, pet	roche	mical	s, fert	ilizers	s, n	atı	ıral	p p	rod	uc	ts, pol	ymer
and (Chlor-A	Ikali	indus	tries.											
Prereq	uisite:	Nil													
Course	e Outco	mes: A	After t	he con	npletio	on of th	ne cou	ırse	the	e sti	ude	ent	wil	l be ab	ole to
CO1	Identi	fy uni	t opei	rations	s and j	proces	sses i	n in	du	stri	al o	ope	rat	ions.	
CO2	Select	the r	aw ma	aterial	ls for i	ndust	rial p	rodı	ıct	s.					
CO3	Sketch and explain the process flow diagram for the manufacture of														
	industrial														
	products.														
CO4	Identi	fy the	majoi	r engir	neering	g prob	lems i	in p	roc	ess	ind	lus	trie	es	
C05	List th	ne ma	jor co	ntent	and p	repare	e a de	taile	ed i	ndı	ıst	rial	vi	sit rep	ort.
					CO - P	O MA	PPING								
CO	PO1	PO2	PO3	PO4	PO5	P06	P07	PO)8	PC)9	PO	10	PO11	PO12
CO 1	3											2			1
CO 2	3											2			1
CO 3	3											2			1
CO 4	3											2			1
CO 5	3											2			1
					Assess	ment I	Patter	n							
				Conti	nuous	Asses	sment	Тос	ls			Ē.	4 9	omost	
Blo	om's Ca	ategor	y	Tes	t1	Tes	t 2	Oth	er	1		Cn Fr	a s	emeste	er n
		-	-					too	ls			ĽX	an	iiiatio	
Remen	nber			~		V	/	V	•						
Under	stand			V		V	•	V	/	-					
Apply				V		V	•	V	,						
Analys	se			-		-		v	,	+					
Evalue	ate							•	,	-					
Create									•	-					
Marlz D	istrihu	tion of	CIA												
wark D	1311104	1011 01													

Course Structure	Attendance	Th	eory [L- T]		Total						
[L-T-P-J]		Assignment	Test-1	Test-2	Marks						
2-0-0-0	5	35	30	30	100						
	Tota	al Mark distribu	ition	· · · · ·							
Total Marks	CIA (Mark	s) ESE (Marks)	ESE Dı	uration						
100	100		0	0)						
SYLLABUS											
MODULE I: Introduction to chemical industries											
Manufacture of	chemical indu	istries, Inorgar	nic chemical	industries	3:						
sulfuric acid. pho	osphoric acid	. Chlor-Alkali	industry-Cł	lorine and	l NaOH.						
MODULE II: Fertili	zer Industries	,									
Fertilizers: Production of Ammonia, Urea, Single Super Phosphate (SSP) and Triple											
Super Phosphate	(TSP).										
MODULE III: Natur	al products in	dustries									
Natural products	industries: M	lanufacture of	-Pulp and P	aper, Suga	r, Oil,						
and Fats. MODIILE IV Petrol	eum refining a	and petrochemic	าวไร								
Petroleum refine	ry operations	: pretreatmen	t. atmosphe	ric distilla	tion unit.						
Petrochemicals: M	Ianufacture o	f acetylene, bu	tane, pheno	l.	,						
MODULE V: Polym	erization indus	stries	· 1								
Polymerization polyester	industries:	Polyethylene,	Polyprop	ylene, P	VC, and						
synthetic fibers (Pharmaceutical production-Raw Synthetic hormo	nylon - 6, nyl industries: materials nes-Vaccines	on - 6,6). History an -Antibiotics-Sy & Sera.	d Growth ynthetic	, Methoo drugs-vita	ls of amins-						
*Students mus industries and	t undergo a	n industrial	visit at ar	ny of the	following						
prepare a report products. The typ alkali industries, polymerization ir	prepare a report with the importance, raw materials, overall process, and products. The types of industries may include chemical industries, chlor- alkali industries, fertilizers, natural products, petroleum, petrochemicals, polymerization industries and pharmaceutical industries										
 Textbooks 1. C.E. Dryden, C Gopala Rao an 1973. 2. G.T. Austin, F 	Outlines of Ch d Marshall Si 2.N. Shreve, C	emical Techno tting, 2 nd Ed., . Chemical Proce	logy, Edited Affiliated Ea ess Industri	and revise st-West Pre es, 5th Ed	d by M. ess, ,						

1984.

Reference books

- 1. J.A. Moulijn, M. Makkee, A.V Diepen, Chemical Process Technology, 2nd Ed., Wiley, 2015.
- 2. P.H. Groggins, Unit Processes in Organic Synthesis, 5th Ed., McGraw Hill, 2001.
- 3. D.F. Kirk-Othmer, Encyclopedia of Chemical Technology, 5th Ed., Wiley Interscience, 2004.
- 4. J.H. Gary, G.E. Handwerk, Petroleum Refining: Technology and Economics, 1st
 - Ed., Marcel Dekker, 2001.
- 5. S. Sarkar, Fuels and Combustion, 3rd Ed., Universities Press, 2009. COURSE CONTENTS AND LECTURE SCHEDULE

No		No. of							
INO.		Hours							
	MODULE 1 (6 hours)								
1.1	Manufacturing of sulfuric acid.	1							
1.2	Manufacturing of sulfuric acid.	1							
1.3	Manufacturing of phosphoric acid.	1							
1.4	Manufacturing of phosphoric acid.	1							
1.5	Chlor-Alkali industry process: Chlorine and NaOH.	1							
1.6	Chlor-Alkali industry process: Chlorine and NaOH.	1							
	MODULE II (4 hours)								
2.1	Production of Ammonia.	1							
2.2	Manufacturing of Urea.	1							
2.3	Manufacturing of Single Super Phosphate (SSP).	1							
2.4	Manufacturing of Triple Super Phosphate (TSP).	1							
	MODULE III (3 hours)								
3.1	Manufacturing of Pulp and Paper.	1							
3.2	Manufacturing of Sugar.	1							
3.3	Processing of Oil and Fats.	1							
	MODULE IV (5 hours)	-							
4.1	Petroleum refinery operations: Crude oil types, properties,	1							
4.2	Picucaument. Detroleum refinery operations: Atmospheric distillation	1							
4.4	unit.	L							

4.3	Petrochemicals: Manufacture of acetylene.	1						
4.4	Manufacture of butane.	1						
4.5	Manufacture of phenol.	1						
MODULE V (4 hours)								
5.1	Manufacturing of polyethylene, Polypropylene.	1						
5.2	Manufacturing of PVC, Polyester.	1						
5.3	Manufacturing of synthetic fibers (nylon - 6, nylon - 6,6).	1						
5.4	Pharmaceutical industries: History and Growth, Methods of production-Raw materials.	1						
5.5	Antibiotics-Synthetic drugs-vitamins.	1						
5.6	Synthetic hormones-Vaccines & Sera.	1						

CO5	Prepare a detailed report on raw materials, products, process layout,
	process description and utilities of industrial visit carried out.

								L	Т	Р	J	S	C	Yea	r of	ion
2401	ז ני	2 8	USTAI	NABL	E DEV	ELOPN	MENT	2	Δ	2	2	5	5	20	.ucu 24	.011
2401	1030	13	AND F	POLLU	TION	CONTH	ROL	4	U	4	4	3	5	20	47	
Prear	nble	e: Ob	jective	of	this	cours	se is	to) i	ncu	ilcat	te	in	studer	nts	an
awar	ene	ss of														
envir	onn	iental	issu	es a	nd t	the g	lobal	in	itia	ativ	es .	tov	varo	ls att	aini	ng
susta	ina	bility.	The s	stude	nt sh	ould :	realiz	e tł	ne	pot	enti	al (of t	echnol	ogy	in
bring	ung	ın su	staina	ble p	ractic	es. Tr	118 CC	ours	se	tam	.111a1	rıze	s si	tudents	S W1	ith
and solutions for sustainability.																
Prerequisite: Nil																
Course Outcomes: After the completion of the course the student will be able to																
CO1 Explain the relevance and the concept of sustainability and the global																
	i	nitiativ	ves in	this o	lirecti	ion.										
CO2]	Explain the different types of environmental pollution problems														
	ć	and men														
CO3		Descri	be the	goal a	and sc	cope of	life c	vcle	as	sess	smei	nt.				
CO4		Apply	LCA so	oftwar	e for v	variou	s proc	luct	s.							
C05]	Demor	strate	the	broad	l pers	pectiv	ve o	f s	ust	aina	able	e pr	actices	by	
	l	ıtilizin	g													
	6	enginee	ering k	nowle	dge a	nd pri	nciple	S.								
<u> </u>		DO2	DO2	DO4		J - FU			סר	D	20	DΟ	10	DO11	DO	10
C01	2	FU2	FU3	PU 4	FUS	PU0	PU 1	ГV	50	F	79	FU	10	FUII	FU	14
C01	<u>२</u>	2		ર		2	े २	()	(2	C)		-	2 2
CO2	3	4		0		2	3	-	4		4	2	-		-	2
C04	3			3	2	2	3	(2		2	2	2		(2
C05	3	2				2	3				· ·				(2
			Ass	sessme	ent Pa	ttern f	for Th	eory	7 CC	mp	oner	ıt				
				Conti	nuous	Asses	sment	: To	ols	T						
Bloc	om's	Catego	ory	Test	: 1	Test	t 2	Oth too	ler ols	E	nd S	em	este	r Exami	inat	ion
Reme	mbe	r				~	•	V	•	<u> </u>			(~		
Unde	rsta	nd				V	'	V	1				(/		
Apply	7					 ✓ 	·	V	•							
Analy	se							V	•							
Evalu	late							V	•							
Create 🗸 🖌																

Assessment Pattern for Lab component										
Bloom's Category	Cont	inuous A	Assessment '	ſools						
Bioom's Category	Class wor	rk	Те	st1						
Remember										
Understand	V		(
Apply	v	· · ·								
Analyse	V	v								
Evaluate										
Create										
Assessment	Pattern for Project	compo	nent							
	Conti	nuous A	ssessment T	ools						
Bloom's Category	Evaluation 1	Eva	luation 2	Report						
Remember										
Understand	v		~							
Apply	v		~							
Analyse	v	 ✓ 								
Evaluate			 ✓ 							
Create			 ✓ 							
Ma	rk Distribution of (CIA								

Course	Attendanc e	Theor [L- T	у]	Practical [P]		Total		
Structur e [L-T-P- J]		Assignment	Test-2	Class work	Evaluation 1	Evaluation 2	Report	Mark s
2-0-2-2	5	10	10	15	5	10	5	60

Total Marks distribution										
Total Marks CIA (Marks) ESE (Marks) ESE Duration										
100	60	40	2.5 hours							
End Semester Examination [ESE]: Pattern										
PATTERN	ESE Marks									

PATTERN 2		2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours	40
	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Introduction to sustainability

Sustainability: Introduction, reasons for unsustainability, concept, evolution of the

concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

MODULE II : Introduction to environmental pollution

Environmental Pollution: Air Pollution and its effects, Estimation of air quality index, Water pollution and its sources, Soil pollution, Zero waste concept and 3 R concepts in solid waste management; Carbon credits, carbon trading and carbon foot print,

legal provisions for environmental protection.

MODULE III : Introduction to Life Cycle Analysis

Life Cycle Analysis (LCA) – Introduction, ISO standards, LCA framework, Goal; Scope

– Functional unit, Product Systems, System Boundary; Inventory Analysis; Impact Assessment; Interpretation.

MODULE IV : Applications of LCA

Sustainability issues in major industrial sectors including process industries, agriculture and food, automobiles, personal care products and energy. Application of

LCA software in these sectors.

MODULE V : Solutions for sustainability

Designing sustainable processes and products, ecosystem ecology,

industrial symbiosis and the circular economy, ecosystems in engineering, economic policies,

societal development.

Text books

1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.

2. Bakshi, B.R., Sustainable Engineering:Principles and Practice, Cambridge

University Press.

Reference books

1. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in

sustainable design and development, Cengage learning.

2. Ni bin Chang, Systems Analysis for Sustainable Engineering:

Theory and Applications, McGraw-Hill Professional.

3. Purohit, S. S., Green Technology – An approach for sustainable environment, Agrobios Publication.

COURSE CONTENTS AND LECTURE SCHEDULE					
No.		No. of Hours (24)			
	MODULE 1 (6 hours)				
1.1	Sustainability: Introduction, reasons for unsustainability.	1			
1.2	Concept, evolution of the concept, Social sustainability concepts.	1			
1.3	Environmental and economic sustainability concepts.	1			
1.4	Sustainable development, Nexus between Technology and Sustainable development.	1			
1.5	Millennium Development Goals (MDGs), Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).	1			
1.6	Clean Development Mechanism (CDM).	1			
	MODULE II (5 hours)				
2.1	Environmental Pollution: Air Pollution and its effects.	1			
2.2	Water pollution and its sources.	1			
2.3	Soil pollution.	1			
2.4	Zero waste concept and 3 R concepts in solid waste management, Carbon credits.	1			
2.5	Carbon trading and carbon foot print, Legal provisions for environmental protection.	1			
	MODULE III (5 hours)				
3.1	Life Cycle Analysis (LCA) – Introduction.	1			
3.2	ISO standards, LCA framework.	1			
3.3	Goal of LCA, Scope – Functional unit, Product Systems, System	1			

	Boundary.	
3.4	Inventory Analysis.	1
3.5	Impact Assessment; Interpretation.	1
	MODULE IV (4 hours)	
4.1	Sustainability issues in major industrial sectors including agriculture and food, automobiles, personal care products and energy.	1
4.2	Application of LCA software in the agricultural industry.	1
4.3	Application of LCA software in the food industry, automobile	1
	industry.	
4.4	Application of LCA software in personal care products, energy	1
	sector.	
	MODULE V (4 hours)	
5.1	Designing sustainable processes and products, ecosystem	1
	ecology.	
5.2	Symbiosis and the circular economy.	1
5.3	Ecosystems in engineering, economic policies.	1
5.4	Societal development.	1

LAB COMPONENT

Including laboratory experiments in a course is an excellent way to enhance the understanding of various concepts in the syllabus. It provides students with hands-on experience and practical application of the theoretical knowledge they acquire in the classroom. It also fosters critical thinking, problem-solving, and practical skills that are valuable in their academic and professional pursuits. Here are some key points to consider when incorporating laboratory experiments into a course:

Alignment with Course Objectives: Ensure that the laboratory experiments align with the course objectives and learning outcomes. The experiments should reinforce and complement the concepts taught in the classroom.

Relevance: Select experiments that are relevant to the course material and provide real-world examples of the concepts being discussed. This helps students see the practical applications of what they are learning.

Safety: Safety is paramount in a laboratory setting. Make sure that all experiments are conducted in a safe environment, and students are aware of the safety protocols and precautions.

Equipment and Materials: Ensure that the necessary equipment and materials are available and in good working condition. Students should have access to the tools and resources needed to conduct the experiments effectively.

Clear Instructions: Provide clear and detailed instructions for each experiment. This should include the purpose of the experiment, the procedures to be followed, data collection methods, and any specific requirements.

Data Analysis and Interpretation: Include a component for data analysis and interpretation in the laboratory reports. This encourages critical thinking and helps students draw meaningful conclusions from their experiments.

Variety: Offer a variety of experiments that cover different aspects of the course material. This can include quantitative experiments, qualitative observations, and even open-ended, exploratory experiments.

Feedback and Assessment: Develop a system for assessing and providing feedback on students laboratory reports and performance. This assessment should contribute to their overall course grade.

Integration with Theory: Encourage students to connect the results of their experiments with the theoretical concepts discussed in the classroom. This reinforces

their understanding and helps bridge the gap between theory and practice.

Practical Skills: Besides reinforcing theoretical knowledge, laboratory experiments should also help students develop practical skills, such as experimental design, data collection, and analysis.

Reflection: Encourage students to reflect on their experiences during the experiments. This can be done through post-lab discussions or written reflections, allowing students to think critically about what they learned.

Flexibility: Be open to adapting the laboratory component as needed. Sometimes, students may discover unexpected results or encounter challenges. This flexibility can turn such situations into valuable learning experiences.

Resources and Support: Provide access to resources, including lab manuals, research papers, and additional readings, to help students delve deeper into the concepts explored in the experiments.

No.	Торіс	No. of Hours (24)	Experiment
1	Water Pollution	2	Water analysis – hardness, chloride content.
2	Water Pollution	2	Estimating the COD of the given water sample.
3	Water Pollution	2	Estimating the DO and BOD
			of the given water sample.
4	Water Pollution	2	Estimating the total solids and dissolved solids content in the given water sample.
5	Water Pollution	2	Analysis of oil and grease in the given wastewater sample.
6	Water Pollution	2	Estimation of Iodine value/acid value of the given sample of oil.
7	Water Pollution	2	Estimation of available chlorine in bleaching

LESSON PLAN FOR LAB COMPONENT

			powder.
8	LCA	2	LCA of various products.
9	Solid waste management	2	To find the moisture content and ash content of the given
			solid waste.
10	Noise pollution	2	To find the level of noise pollution in a given area.
11	Solid waste management	2	Proximate analysis.
12	Characterization	2	Study of equipments – Redwood viscometer, Junker's gas calorimeter, Flash and fire point apparatus. Study of bomb calorimeter etc.

COURSE PROJECT

Incorporating a project component in a course complements theoretical learning and laboratory experiments by providing students with the opportunity to synthesize, apply, and deepen their understanding of course concepts. It also encourages critical thinking, problem-solving, and creativity, which are valuable skills for students academic and professional growth. Here are some key points to consider when including a project component in a course to cover the concepts from the syllabus:

Alignment with Course Objectives: Ensure that the project aligns with the course objectives and learning outcomes. The project should provide an opportunity for students to apply the theoretical knowledge they have gained.

Relevance: Select project topics that are directly related to the course material. The project should enable students to explore and apply the concepts covered in the classroom and laboratory sessions.

Project Types: Consider various project types, such as group projects, case studies, or practical applications. The choice of project type should depend on the course goals and the specific concepts being covered.

Clear Guidelines: Provide clear project guidelines and expectations. Include

information on project deliverables, deadlines, and assessment criteria to ensure that students understand what is expected of them.

Student Choice: If possible, allow students to choose project topics that align with their interests or career goals. This can increase motivation and engagement.

Resources and Support: Ensure that students have access to the necessary resources, including literature, software, equipment, or guidance from instructors or mentors.

Interdisciplinary Approach: Encourage interdisciplinary projects that draw on concepts from multiple areas of the syllabus. This can promote a holistic understanding of the subject matter.

Peer Collaboration: Encourage collaboration among students for group projects. Teamwork can foster problem-solving skills and diverse perspectives.

Reflection and Presentation: Require students to reflect on their project experiences and present their findings to the class. This promotes critical thinking and communication skills.

Assessment Criteria: Clearly define how the project component will be graded. Assess not only the final product but also the process, research, problemsolving, and communication skills.

Feedback and Revision: Provide feedback on project proposals and guide students in the right direction. Allow them to revise and improve their work based on feedback.

Integration with Theory and Lab: Emphasize the connection between the project and the theoretical and laboratory components of the course. Encourage students to apply what they have learned in these sessions to their projects.

Real-World Applications: Whenever possible, choose projects that have realworld applications. This can help students see the practical relevance of their coursework.

Sample project topics for students to work on:

1	Using LCA, choose between plastic bag and paper bag.
---	--

2 Using LCA, choose between soyabean oil and groundnut oil.

3 Analysis of drinking water sample in your house and check whether it is meeting the drinking water standards.

<u>Note</u>:-Projects need not be restricted to the above topics. Students are encouraged to choose any application problems, in the course domain, which they desire to work on.

LESSON PLAN FOR PROJECT COMPONENT

The concepts in the syllabus that can be covered through the project shall be included in the project component part to ensure comprehensive coverage of the course through theory, lab and project sessions. Total No. of Class Hours: 24

12 Hours of self-study hours also should be utilized for the development of the complete project.

No.	Торіс	No. of Class Hours [24]
1	Preliminary Design of the Project.	4
2	Zeroth presentation (4 th week).	2
3	Project work - First Phase.	4
4	Interim Presentation (7 th and 8 th weeks).	4
5	Project work - Final Phase & Report writing (discussions in class during project hours).	6
6	Final Evaluation and Presentation (11 th and 12 th weeks).	4

	CO Assessment Sample Questions							
1	Explain with an example a technology that has contributed positively							
1	to							
	sustainable development.							
2	Explain any one environmental pollution problem and suggest a							
-	sustainable							
	solution.							
3	Explain the importance of conducting life cycle assessment of a							
	product.							
4	How can LCA support the circular economy?							
_	Suggest suitable measures to make the conveyance facilities used by							
5	your							
	institution sustainable.							

		CHEMISTRY FOR								Р	J	S	С	Yea	ar of Juction
24CHI	2304	PROCESS ENGINEERS							1	2	0	4	4	20	24
Prean	nble:	Impor	tant to	opics	from	physic	al che	emi	strv	y w	hi	ch	are	e very	much
relevant to process engineering students are introduced in the course. The															
course covers a variety of topics such as solid state, colligative properties															
of so	lutio	ns, co	lloids,	surf	ace o	chemis	try, e	etc.	In	a	dd	itio	n	to th	ese a
modu	le d	iscuss	ing t	the t	heory	/ and	inst	run	nen	ital		tec	hn	iques	that
encon	npass	s elect:	roana	lytical	mea	surem	ents i	s al	lso						
incluo	ded. '	The st	udent	ts are	expe	ected to	o atta	in	the	sk	cill	to	so	olve va	arious
physi	cal cl	nemist	ry pro	blems	S.		C1								
Prereg	luisite	e: Basic	c know	vledge	in En	gineeri	ng Che	emi	stry	7.		1		•11 1	11 /
Cours	e Out	comes:	After	the co	mplet	10n of t	he cou	irse	e th	e si	tuc	len	t w	fill be a	ible to
CO1	Crys	tallogr	specii	ic cry	star	struct	ures	by	ap	piy	1118	gu	bas	1C	
	cond	rents a	nd XR	D nat	terns	of mat	erials	IUn	det	rsta	nċ	1 1e	vel	1	
	Des	cribe t	he effe	ects of	solu	te cond	centra	tior	1 01	n th	ne	osr	not	tic pre	ssure,
CO2	vapo	or												1	,
	pres	sure, l	ooiling	; point	and	freezin	g poin	t of	a	solı	ati	on	[U1	ndersta	and
	level]	_					_					_		
CO3	Describe the synthesis, purification and application of colloids										5				
		leistai	.10												
	Inte	Interpret different adsorption isotherms and information on a										าล			
CO4	material's														
	surf	ace con	nposit	tion ar	on and topography from various microscopic images										
	[App	oly leve	2]												
C05	Iden	tify th	ne su	uitable	elec	troche	mical	ana	lyt	ical	l t	ech	nie	que fo	r the
	chai	acteriz	zation	of ma	terial	s and i	nterpr	et t	he	dat	ta	[Ap	ply	/ level]	
001	Qua	ntity ti stigate	he ana	alyte i	ising	electro	chemi	cal	an	aly	t1C	al t	ecł	nnique	s,
C06	investigate the kinetics of a reaction describe the mutual collubilities of														
	liau	ids an	d ann	a icad lv the	idea	to find	out th	е 11	nk	nov	vn	COI	nce	entrati	on of
	a so	lute [A	pply l	evel]	Iucu		out th					001		on a ch	011 01
		L	11 5		CO -	PO MA	PPING								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	28	PC)9	PO	10	PO11	PO12
CO 1	3	1													1
CO 2	3	1													1
CO 3	3	1													1
CO 4	3	1			1										1
CO 5	3	1			1		1		1		_				1
CO 6	2	1							1		1	1	L		1
	Assessment Pattern for Theory component										nt				

	Continuou	is Assessme	nt Tools	End Somester		
Bloom's Category	Test1 Test 2 Oth too			Examination		
Remember	v	 ✓ 	v	✓		
Understand	v	 ✓ 	v	✓		
Apply	v	 ✓ 	v	✓		
Analyse			~			
Evaluate			v			
Create			v			

Assessment Pattern for Lab component								
Plaam's Catagam	Continuous Assessment Tools							
Bloom's Category	Class work	Test1						
Remember								
Understand	v	✓						
Apply	v	✓						
Analyse	v	✓						
Evaluate	v							
Create 🖌								
Mark Distribution of CIA								

	Attendance	Theo	ory [L- T]	Practi	Total		
Course Structure [L-T-P-J]		Assignment	Test-1	Test-2	Class work	Lab Exam	Marks
2-1-2-0	5	10	10	10	15	10	60

Total Marks distribution								
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration					
100	60	40	2.5 h					
End Semester Examination [ESE]: Pattern								
PATTERN	PART A	PART B	ESE Marks					

PATTERN 2		 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours 	40
· · · · · · · · · · · · · · · · · · ·	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Solid state

Types of solids, Difference between crystalline and amorphous solids, Elements of

symmetry, space lattice and unit cell, Bravais lattices, seven crystal systems, law of rational indices, Miller Indices, X-ray diffraction, Derivation of Bragg's equation, XRD patterns of a cubic system, Powder diffraction, Neutron diffraction, Types of crystals-introductions to molecular, covalent, metallic and ionic crystals

MODULE II: Colligative Properties of Dilute Solutions

Dilute solutions, Colligative properties, lowering of vapour pressure-Raoult's law,

determination of molecular mass from vapour pressure lowering, numerical, Elevation in boiling point- determination of molecular mass from elevation in boiling point, numerical, Depression in freezing pointdetermination of molecular weight from depression in freezing point, numerical Osmotic pressure, van't Hoff's equation for osmotic pressure, determination of molar mass, Abnormal molar masses of solutes and van't Hoff factor.

MODULE III: Colloids

Classification of colloids, Preparation of colloids - dispersion and condensation methods, Purification of colloids - dialysis and ultrafiltration, Properties of colloids - kinetic, optical and electrical properties, Origin of charge on colloids, Electrical double layer, Zeta potential- factors affecting, determination of zeta potential, Electrokinetic properties-electrophoresis, electro-osmosis, Determination of size of colloids, Protective colloids, Gold number, stability of colloids, Application of colloids

- Cottrell precipitator, purification of water and delta formation

MODULE IV: Surface Chemistry

Adsorption- Types, Adsorption Isotherms – Langmuir, Freundlich, and BET

equations (no derivation for BET). Determination of surface area using BET equation. Gibbs adsorption isotherm –derivation, Gibbs surface excess. Surface Characterization by Microscopy- Principle, instrumentation and applications of Scanning electron microscope (SEM), scanning tunneling microscope (STM) and atomic force microscope (AFM). **MODULE V**: Electroanalytical techniques

Conductometry- principle, determination of equivalence points for acid–base

titrations, Potentiometry – principle, determination of equivalence point for acid-base titration, Polarography- principle, residual current, migration current, diffusion current (Ilkovic equation) and limiting current, half wave potential, applications, Anodic stripping voltammetryprinciple, working, applications, Amperometry-principle, , Electrochemical sensors (Biosensors for glucose, ethanol

and urea, gas sensors for Oxygen and CO2)

Text books

- 1. B. R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co., 2013.
- 2. R. L. Madan and G. D. Tuli Physical Chemistry, published by S. Chand Publishing, Edition 2016
- 3. A. Bahl, B. S Bhal and G D Tuli, Essentials of Physical Chemistry, S. Chand

Publishing, Edition 2010

Refer	ence books								
1	. F. W. Fifield, Principles and Practice of Analytical								
	Chemistry, Wiley-Blackwell; 5th edition, 2000								
2	. J. B. Yadav, Advanced Practical Physical Chemistry, Goel								
	Publications, 2017 Edition								
3	. Gary D. Christian, Analytical Chemistry, 6th Edition V	Viley;							
	Sixth edition (2007)								
4	. D. N. Bajpai, O. P. Pandey and S. Giri, Practical Chemist	ry, S Chand							
	LTA, 2015 EAN. COURSE CONTENTS AND LECTURE SCHEDULE								
		No of							
No.		Hours							
	MODULE 1 (7 hours)								
1.1	Types of solids. Difference between crystalline and	1							
	amorphous solids, Elements of symmetry								
1.2	space lattice and unit cell, Bravais lattices, seven	1							
	crystal systems, law of rational indices, Miller Indices								
1.3	X-ray diffraction, Derivation of Bragg's equation	1							
1.4	XRD patterns of a cubic system	1							
1.5	Powder diffraction	1							
1.6	Neutron diffraction								
1.7	7 Types of crystals-introductions to molecular, covalent, 1 metallic and ionic crystals								
	MODULE II (8 hours)								
2.1	Dilute solutions, Colligative properties, lowering of	1							
2.2	Determination of melocular mass from variour	1							
2.2	pressure lowering, numerical	L							
2.3	Elevation in boiling point	1							
2.4	determination of molecular mass from elevation in	1							
	boiling point, numerical								
2.5	Depression in freezing point	1							
2.6	determination of molecular weight from depression in freezing point, numerical	1							
2.7	Osmotic pressure, van't Hoff's equation for osmotic pressure, determination of molar mass	1							
2.8		1							
	Abnormal molar masses of solutes and van't Hoff factor								
	MODULE III (7 hours)								

3.1	Classification of colloids, Preparation of colloids - dispersion and condensation methods	1
3.2	Purification of colloids – dialysis and ultrafiltration, Properties of colloids - kinetic, optical and electrical properties	1
3.3	Origin of charge on colloids, Electrical double layer	1
3.4	Zeta potential- factors affecting, determination of zeta potential,	1
3.5	Electrokinetic properties-electrophoresis, electro-osmosis	1
3.6	Determination of size of colloids, Protective colloids, Gold number	1
3.7	stability of colloids, Application of colloids – Cottrell precipitator, purification of water and delta formation.	1
	MODULE IV (7 hours)	
4.1	Adsorption- Types, Adsorption Isotherm – Langmuir	1
4.2	Adsorption Isotherm - Freundlich	1
4.3	BET equations (no derivation for BET). Determination of surface area using BET equation	1
4.4	Gibbs adsorption isotherm –derivation, Gibbs surface excess	1
4.5	Principle, instrumentation and applications of Scanning electron microscope (SEM)	1
4.6	Principle, instrumentation and applications of scanning tunneling electron microscope (STM)	1
4.7	Principle, instrumentation and applications of atomic force microscope (AFM).	1
	MODULE V (7 hours)	
5.1	Conductometry- principle, determination of equivalence points for acid-base titrations	1
5.2	Potentiometry – principle, determination of equivalence point for acid-base titration	1
5.3	Polarography- principle, residual current, migration current, diffusion current (Ilkovic equation)	1
5.4	limiting current, half wave potential, applications, Anodic stripping voltammetry-principle, working, applications	1
5.5	Amperometry-principle	1
5.6	Electrochemical sensors-Biosensors for glucose, ethanol and urea	1
5.7	Gas sensors for Oxygen and CO ₂	1

LESSON PLAN FOR LAB COMPONENT (Any 6 experiments to be conducted)

No.	Торіс	Experiment	
1	Electroanalytical methods	4	Experiment 1: Determine the end point of titration between CH_3COOH and NaOH by conductometric titrationExperiment 2: Determine the composition of mixture of acetic acid and hydrochloric acid by
2	Phase rule	2	Experiment 5: Mutual solubility curve of phenol and water (or trimethylamine and water) and determination of CST Experiment 6: Determine the concentration of aqueous KCl solution by studying the mutual solubility of phenol and water
3	Partition coefficient	2	Experiment 7: Partition coefficient of Succinic acid between water and ether. Experiment 8: Study the distribution of benzoic acid between benzene and water and show that benzoic acid dimerizes in benzene
4	Colligative properties	3	Experiment 9: Determine the molecular weight of a non-volatile substance (acetanilide/urea/naphthalene/anthracene/thiou rea etc) using Rast method- camphor as solvent Experiment 10: Determination of molal transition point depression constant Experiment 11: Determination of transition temperature of salt hydrate
5	Adsorption	2	Experiment 12: Investigate the adsorption of oxalic acid by charcoal and examine the validity of Freundlich and Langmuir isotherms Experiment 13: Determination of unknown concentration of oxalic acid from adsorption experiment

6	Kinetics	2	Experiment 14: Study the kinetics of the reaction between potassium persulphate and potassium iodide Experiment 15: Study the kinetics of acid hydrolysis of methyl acetate
---	----------	---	---

		CO Assessment Sample Questions
	a) (Compare the X-ray powder diffraction patterns of NaCl and
1]	KCl and show that unit cell length of KCl is larger than that of
	I	NaCl.
	b) I	Describe how XRD can be used for phase identification.
	a) I	Explain why 0.60 grams of acetic acid dissolve in 200 grams of
	1	benzene to form a solution that lowers the freezing point of
2	1	benzene to 5.40°C.
-	b) 1 c	Determine the molecular weight of acetic acid if a solution that contains
	3	30.0 grams of acetic acid per kilogram of water freezes at -
	(0.93°C. Do these results agree with the assumption that acetic
	6	acid has the formula CH ₃ COOH?
	a) I	Describe a few of the food chemistry concepts linked to colloids,
3	5	such as how to prepare butter, stabilize milk, and cook eggs in
	(different ways.
	b) I	Describe the role of colloids in wastewater treatment.
	c) I	Explain how the adsorption of a molecule on a surface can be
	5	studied using scanning electron microscope.
4	d) 1	Explain with examples from literature, how the scanning
	t	tunneling microscope (STM) and the atomic force microscope
	((AFM) are capable of
	0) I	If your comple was known to the atomic level.
	a) 1	a your sample was known to contain metal ions that
5	(suggest trying?
	ь) т	Identify on electroopolytical technique to determine the
		concentration of Ph ²⁺ in a water sample. Justify your answer
	a) (Conduct volumetric conductometric and potentiometric acid
6	a) (base titrations and compare the results
	, r	sase intations and compare me results.

040117	300F	MATERIAL & ENERGY BALANCE					L	Т	P	J	S	С	Yea Introd	r of uction	
24CH1	305		C	OMPU	ΙΟΙΤΑΊ	DNS		2	1	0	0	2	3	202	24
Pream	ble: T	his co	ourse	aims	to es	stablis	h fun	dan	ner	ital	l p	rin	cipl	es of C	hemical
Engine	ering	_	_									_			
in a si	mple .	and up	p-fron	t man	ner a	nd pro	ovide a	a br	oa	d t		kgı	our	nd for ap	plying
these	atudente te basio concente ef composition coloulatione prosticad in chamical														
processes equations of states material and anarray balances which are															
fundamental and core areas of the Chemical Engineering course															
Prereat	Prerequisite. Nil														
Course	e Outc	omes:	After t	he con	npletic	on of th	ne cou	rse	the	e st	ud	ent	will	be able	to:
	Dete	rmine	the	comp	osition	n of a	solids	, lio	qui	ids	, e	and	so	lutions	using
CO1	weig	ht		_					_						_
	perc	entage	e, mole	e perc	entage	e, mola	arity,	mol	ali	ty,	no	rm	ality	y, and pa	arts per
	milli	on (PP	·Μ).	1	C 1		1 1		. 1	. 1					
	Appl	y the	princi	ples of	t gas la	aws, 11	ncludi	ing	the	ld	lea	l Ga	as L	aw, Dali	con's
CO2	Law	, and A	Amaga	it's La	iw in	calcu	lation	s ir	100	lV1	ng	th	e co	ompositi	on,
	aver	age m		ar											
	Weig	nt, and		f state	;aseou	s mixi	ures.	n d	or	117	0.01	۰ F	`a116	tion to	
CO3	desc	rihe th	10118 0 1e	a state	s, suc	nasi		ui u	eı	VV č	aai	SE	que		
	beha	vior of	gases	unde	r differ	cent co	nditio	ns.							
004	Solv	e basic	c mate	rial ba	alance	equa	tions f	for t	he	ur	nit d	ope	rati	ons and	unit
C04	proc	esses													
	emp	loyed in	n proc	ess inc	lustrie	es.									
C05	Solve	e energ	y bala	ince ec	Juation	ns for	variou	s pł	iys	ica	l a	nd	chei	mical pro	ocesses.
	DO1	200	700	704	CO -	- PO M	APPIN(j D	~ ~	-	~~~		10	DO11	DO10
CO 001		PO2	PO3	P04	P05	P06	P07	P	08	P	09	PC	010	POII	P012
C01 C02	3	3								+					2
CO2	3	3								-					$\frac{2}{2}$
C03	3	3	2							+					
C07	े २	3 3	2							+					2
005	5	5	4		Δεερε	sment	Patte	rn							4
				Conti	inuous	Asses	sment	Too	ls						
Blo	Bloom's Category				t1	Tes	t 2	Oth	ier				End	Semeste	r
								too	ols				БХЯ	iminatio	1
Remen	nember V V V														
Under	stand			✓		V	•	V	/		V				
Apply				~		V	•	V	/					~	
Analys	e							V	/						
Evalua	ate							V	/						
Create 🖌 🖌															

Mark Distribution of CIA

Course Structure		Th	(D-4-1 M-4)-		
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks
2-1-0-0	05	15	10	10	40

Total Mark distribution					
Total Marks		CIA (Marks)	ESE (Marks) ES		E Duration
100		40	60		3 Hours
End Semester	Examina	ation [ESE]: Patte	rn		
PATTERN PART A		PART A	PART B		ESE Marks
PATTERN 1	PART A 10 Questions, each question carries 2 marks Marks: (2x10 =20 marks) Total Marks: 20		PART B 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours Total Marks: [5x8 = 40		60

SYLLABUS

MODULE I: Solids, Gases, Vapours, and Liquids

Composition of Solids – weight percentage and mole percentage.

Composition of liquids and solutions – weight percentage, mole percentage, molarity, molality, normality, PPM.

Gaseous mixtures - composition, average molecular weight, and density.

Concept of critical property. Gas laws – Ideal gas law, Dalton's law, and Amagat's law.

Equations of state – Van der Waals Equation. Vapour pressure - Clausius-Clapeyron

equation. Ideal and non-ideal solutions - Raoult's law & Henry's law.
MODULE II: Material Balances for Unit Operations

Concept of material balance, open and closed systems, steady state and unsteady state,

multiple component systems, selection of a basis, key component, problemsolving

strategy.

Conservation of mass, material balance for systems without chemical reactions – Mixing, Distillation, Evaporation, and Absorption.

Recycle, purge, and bypass calculations.

MODULE III: Material Balances for Reactive Processes

Definition of terms: limiting reactant, excess reactant, percentage yield, conversion, and selectivity.

Concept of stoichiometry and mole balances, Combustion of solids, liquids, and gaseous

fuels. Calorific Value. Orsat Analysis. Proximate and Ultimate Analysis of Coal. **MODULE IV**: Energy Balance on Nonreactive Processes

Elements of energy balance calculations – reference states, hypothetical process paths,

and procedure for energy balance calculations.

Changes in temperature – sensible heat and heat capacities, heat capacity

formulas, estimation of heat capacities, energy balances on single phase systems.

Phase change operations – latent heats, estimation and correlation of latent heats, energy

balance on processes involving phase changes.

MODULE V: Energy Balance on Reactive systems

Heat of reaction – measurement, and calculation of heat of reaction – Hess's law. Formation reaction and heat of formation.

Heat of combustion, and determination of temperatures for adiabatic and nonadiabatic reactions.

Textbooks

- Himmelblau, D. M., Riggs, J. B. "Basic Principles and Calculations in Chemical Engineering", Eighth Ed., Pearson India Education Services, 2015.
- 2. Bhatt, B. I., Vora, S. M., "Stoichiometry", Fourth Edition, Tata McGraw Hill

Publishing Company Ltd, 2004.

3. Narayanan K.V. and Lakshmikutty B., "Stoichiometry and Process Calculations", Prentice Hall of India, 2006.

Reference books

- 1. V. Venkataramani, N. Anantharaman, and K.M. Meera Sheriffa Begum., "Process Calculations", Second Edition, PHI Learning Private Limited, 2011.
- 2. Felder, R. M.; Rousseau, R. W., "Elementary Principles of Chemical Processes", Third Edition, John Wiley & Sons, 2000.
- Hougen, O. A., Watson, K. M., Ragatz, R. A., "Chemical Process Principles, Part-I Material & Energy Balances", Second Edition, CBS Publishers & Distributors, 2004

2004.

	COURSE CONTENTS AND LECTURE SCHEDULE	
		No. of
No.		Hours
	MODULE 1 (9 Hours)	
1.1	Composition of Solids – weight percentage and mole percentage.	1
1.2	Composition of liquids and solutions – weight percentage, mole	1
	percentage, molarity, molality, normality, PPM.	
1.3	Composition of liquids and solutions – weight percentage, mole	1
	percentage, molarity, molality, normality, PPM.	
1.4	Gaseous mixtures – composition, average molecular weight, and	1
	density. Concept of critical property.	
1.5	Gaseous mixtures – composition, average molecular weight, and	1
	density. Concept of critical property.	
1.6	Gas laws – Ideal gas law, Dalton's law, and Amagat's law.	1
1.7	Equations of state – Van der Waals Equation.	1
1.8	Vapour pressure - Clausius-Clapeyron equation.	1
1.9	Ideal and non-ideal solutions - Raoult's law & Henry's law.	1
	MODULE II (8 Hours)	
2.1	Concept of material balance, open and closed systems, steady state	1
	and unsteady state	
2.2	multiple component systems, selection of a basis, key component,	1
	problem-solving strategy	

2.3	multiple component systems, selection of a basis, key	1	
	problem-solving strategy		
2.4	Conservation of mass, material balance for systems without	1	
	chemical reactions – Mixing		
2.5	material balance for systems without chemical reactions – Distillation, Evaporation	1	
2.6	material balance for systems without chemical reactions – Absorption	1	
2.7	Recycle, purge, and bypass calculations	1	
2.8	Recycle, purge, and bypass calculations	1	
	MODULE III (7 Hours)		
3.1	Definition of terms: limiting reactant, excess reactant, percentage	1	
3.2	Definition of terms: limiting reactant, excess reactant, percentage	1	
2.2	Concept of stoichiometry and mole balances	1	
3.4	Combustion of solids, liquids, and gaseous fuels, calorific value	1	
3.5	Combustion of solids, liquids, and gaseous fuels, calorific value	1	
3.6	Orsat Analysis.	1	
3.7	Proximate and Ultimate Analysis of Coal.	1	
	MODULE IV (7 Hours)		
4.1	Elements of energy balance calculations – reference states, hypothetical process paths, and procedure for energy balance calculations.	1	
4.2	Elements of energy balance calculations – reference states, hypothetical process paths, and procedure for energy balance calculations.	1	
4.3	Changes in temperature – sensible heat and heat capacities, heat capacity formulas, estimation of heat capacities, energy balances on single phase systems.	1	
4.4	Changes in temperature – sensible heat and heat capacities, heat capacity formulas, estimation of heat capacities, energy	1	

	balances on single phase systems			
4.5	Phase change operations – latent heats, estimation and correlation of latent heats	1		
4.6	⁵ Phase change operations – latent heats, estimation and correlation of latent heats			
47	Energy balance on processes involving phase changes.	1		
1.7	MODULE V (5 Hours)	_		
5.1	Heat of reaction – measurement, and calculation of heat of reaction – Hess's law.	1		
5.2 Heat of reaction – measurement, and calculation of heat of reaction – Hess's law.		1		
5.3	Formation reaction and heat of formation			
5.4	Heat of combustion, and determination of temperatures for adiabatic and nonadiabatic reactions.	1		
5.5	Heat of combustion, and determination of temperatures for adiabatic and nonadiabatic reactions.	1		
	CO Assessment Sample Questions			
1	The molecular formula of an organic compound is $C_{10}H_7Br$. weight	Find the		
	Natural gas has the following composition by volume percent. CH C2H6	[4 – 83.5%;		
2	 - 12.5% and rest Nitrogen. Calculate: Composition in mole % Composition in Wt% Average molecular weight. 			
3	Calculate the pressure developed by one kmol of NH3 gas contain vessel of 0.6m3 capacity at a constant temperature of 473 K usin Waals equation. Given that a = 0.4233 Nm4/mol2 and b = 3.73 x 10-5 m3/mol.	ned in a ng Van der		

	1000 kg of mixed acid of composition 40% H2SO4, 45% HNO ₃ and 15%
	H_2O is to be produced by strengthening waste acid of composition 30%
4	H ₂ SO ₄ , 36% HNO ₃ and 34% H ₂ O by weight. Concentrated sulphuric acid
	of strength 95% and concentrated nitric acid containing 80% acid are
	available for this purpose. Calculate in kilograms, the amount of spent
	acid and concentrated acid to be
	mixed together.
	A fuel oil containing 88.2% Carbon and 11.8% Hydrogen (by weight) is
5	burnt with 20% excess air. 95% of the carbon is burnt to carbon dioxide
5	and the rest to carbon monoxide. All the hydrogen is converted to
	water. Determine the Orsat
	analysis of the flue gas.

24HUT310			LIF PROF	'E SKII ESSIOI	LLS AN IAL ET	ID 'HICS	L	Т	P	J	S	С	Yea Introd	r of uction
							3	0	0	0	3	3	20	24
Preamble: The objective of this course is to enhance the employability and maximize the potential of the students by introducing them to the principles underlying personal and professional success. It equips them with the necessary skills to apply these principles effectively in their lives and careers. This course covers essential life skills for personal and professional success, introduces creative problem-solving techniques, fosters teamwork and leadership qualities, highlights the core values of professional ethics, and explains how individuals play a crucial role in technological development while maintaining personal and legal ethical standards.								y and aciples h the areers. ccess, c and s, and pment						
Prerec	uisite	: NIL		1	<u> </u>	C . 1		. 1				•11		
Cours	e Outc	omes:	After t	he con	npletio	on of th	e coui	rse th	ie st	ude	entv	will	be able 1	to
C01	De pr	escrib ofessi	e diffe onal li	rent li fe (Un	fe skill dersta	ls requ and Le	ired i vel)	n per	sor	al a	and			
CO2	Ill [.] so	ustrat lve ne	e appi w pro	ropriat blems	e thin creati	king a vely (A	nd pr .pply l	obler Level	n-so)	olvii	ng t	ech	niques	to
CO3	De Le	Demonstrate the basics of teamwork and leadership qualities (Apply Level)												
CO4	Id pr	entify ofessio	the co onal. (re valu Under	ies tha stand	at shap Level)	e the	ethic	al t	eha	vio ⁻	ur o	fa	
C05	Ez uț	xplain pholdi	the rong per	ole and sonal	l respo ethics	onsibili and le	ity in egal et	tech: thics	nolo (Ur	ogica 1de1	al d sta	evel .nd]	opment Level)	
					CO -	· PO MA	PPING	ŕ						
СО	PO1	PO2	PO3	PO4	P05	PO6	P07	POS	3 F	PO9	P	01 0	PO11	PO12
CO1						~		~					~	~
CO2		~	~	~				~		~			~	~
CO3								~						~
CO4								~						~
CO5						~		~						~

Assessment Pattern						
Bloom's Category	Continuous	End Semester				
	Test 1	Test 2	Other tools	Examination		
Remember	~	~	~	v		
Understand	~	~	~	~		
Apply	~	~	~	~		
Analyse						
Evaluate						
Create						
Mark Distribution of CIA						

	Theory [L-T]			Total Marks			
Course Structure[L-T-P	J] Attendance	Assign	nent	Test-1	Test-2		
3-0-0-0	5	15)	10	10	40	
Total Mark distribution							
Total Marks	CIA (Marks)	ESI	E (Mar	ks)	ES	E Duration	
100	40	60			3 hrs		
End Semester Examination [ESE]: Pattern							
Pattern	Part A			Part B		ESE Marks	

PATTERN 1	10 Questions, each question carries 2 marks Marks: (2×10 =20 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5×8 = 40 marks) Time: 3 hours	60		
	Total Markey 20	Total Marles [5×8			
	Total Marks. 20	= 40 marks]			
	SYLLABUS				
MODULE I (FOUNDATIO	N OF LIFE SKILLS)				
Understanding Life Skills: Meaning and Significance of Life Skills-WHO- Identified Life Skills-Life skills for professionals Self-awareness: Definition and Need-Tools and Techniques of Self-awareness Stress Management: Stress, reasons and effects- stress diaries- Four A's of					

stress management

Coping with emotions: Identifying and managing emotions- PATH method and relaxation techniques

(Group activities for self-awareness and stress management)

MODULE II (21ST CENTURY SKILLS AND PROBLEM SOLVING TECHNIQUES)

21st Century Skills: Creativity, Critical Thinking, Collaboration, Problem Solving, Decision Making- Lateral Thinking- Critical thinking Vs Creative thinking Problem Solving Techniques: Six Thinking Hats- Mind Mapping-Forced Connections Scientific temperament and Logical thinking with case studies. (Activity based learning)

MODULE III (GROUP DYNAMICS AND LEADERSHIP)

Group and Team Dynamics: Composition, Formation-Problem Solving in Groups-Group vs Team, Team Dynamics- Managing team performance(Activity based learning) Leadership: Leadership Framework -Types of Leadership-VUCA Leadership

Transactional vs Transformational Leaders

MODULE IV (HUMAN VALUES)

Morals, values and Ethics – Integrity- Academic integrity-Work Ethics-Service Learning Civic Virtue- Respect for others- Living peacefully- Caring and Sharing- Honestly courage-Cooperation commitment- Empathy-Self Confidence -Social Expectations. Case study on Engineering disasters (Include study of Ethical issues in a recent disaster) Code of Conduct in Engineering profession.

MODULE V (RESPONSIBILITIES AND RIGHTS)

Collegiality and loyalty – Managing conflict- Respect for authority- Collective bargaining Confidentiality-Role of confidentiality in moral integrity-Conflicts of interest Occupational crime- Professional rights-Employee right- IPR Discrimination Global ethical issues- Business ethics, Computer Ethics, Environment ethics – Role in technological development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors.

Text books

- 1. Remesh S., Vishnu R.G., "Life Skills for Engineers", Ridhima Publication, First Edition 2016
- 2. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016
- 3. Mike W Martin and Roland Schinzinger, Ethics in Engineering, 4th edition, Tata McGraw Hill Publishing Company Pvt. Ltd, New Delhi,2014.

Reference books

- 1. Shiv Khera, You Can Win, Macmillan Books, New York, 2003
- 2. Barun K. Mitra, "Personality Development & Soft Skills", Oxford Publishers, Third impression, 2017.
- 3. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company, 2014
- 4. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of

TKM College of Engineering, Kollam (Govt. Aided and Autonomous)

5.	India, New Jersey, 2004. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics Concepts and cases, Wadsworth Thomps Learning, United states, 2005.	on
	COURSE CONTENTS AND LECTURE SCHEDULE	
No.		No. of
		Hours (36)
	MODULE I (8 Hours)	
1.1	Understanding Life Skills: Meaning and Significance of Life Skills WHO-Identified Life Skills-Life skills for professionals	1
1.2	Self-awareness: Definition and Need-Tools and Techniques of Self awareness	1
1.3	Activity based on Self-awareness	1
1.4	Activity based on Self-awareness	1
1.5	Stress Management: Stress, reasons and effects- stress diaries Four A's of stress management	1
1.6	Coping with emotions: Identifying and managing emotions- PATH method and relaxation techniques	1
1.7	Activity based on Stress Management	1
1.8	Activity based on Stress Management	1
	MODULE II (7 Hours)	
2.1	21st Century Skills: Creativity, Critical Thinking, Collaboration, Problem Solving	1
2.2	Decision Making- Lateral Thinking- Critical thinking Vs Creative thinking (1 hour for exercise)	1
2.3	Activity based on Lateral Thinking, Critical and Creative thinking	1
2.4	Problem Solving Techniques: Six Thinking Hats- Mind Mapping Forced Connections (2 hours for activity)	1
2.5	Activity based on problem solving techniques	1

2.6	Activity based on problem solving techniques	1			
2.7	2.7 Scientific temperament and Logical thinking with case studies				
	MODULE III (7 Hours)				
3.1	Group and Team Dynamics: Composition, Formation- Problem Solving in Groups	1			
3.2	Group vs. Team, Team Dynamics- Managing team performance (2 hours for activity)	1			

TKM College of Engineering, Kollam (Govt. Aided and Autonomous)

3.3	Activity based on Team Dynamics	1
3.4	Activity based on Team Dynamics	1
3.5	Leadership: Leadership Framework -Types of Leadership	1
3.6	VUCA Leadership	1
3.7	Transactional vs. Transformational Leaders	1
	MODULE IV (7 Hours)	
4.1	Morals, values and Ethics – Integrity- Academic integrity	1
4.2	Work Ethics- Service Learning- Civic Virtue- Respect for others Living peacefully	1
4.3	Honestly- courage-Cooperation commitment- Empathy	1
4.4	Self Confidence -Social Expectations.	1
4.5	Case study on Engineering disasters	1
4.6	Case study on Engineering disasters	1
4.7	Code of Conduct in Engineering profession	1
	MODULE V (7 Hours)	
5.1	Collegiality and loyalty – Managing conflict- Respect for authority	1
5.2	Collective bargaining- Confidentiality-Role of confidentiality in moral integrity	1
5.3	Conflicts of interest- Occupational crime	1

5.4	Professional rights-Employee right- IPR Discrimination 1						
5.5	Global ethical issues- Business, Engineering, Environment. 1						
5.6	Role in technological development-Engineers as Managers1Consulting Engineers1						
5.7	Engineers as Expert witnesses and advisors. 1						
	CO Assessment Questions						
CO1	 201 1. List 'life skills' as identified by WHO. 2. Explain the essential life skills required by a professional. 						
CO2	1. Illustrate the creative thinking process with the help or suitable example 2. "Imagine you are tasked with address complex environmental issue, such as reducing plastic with in a coastal community". How would you apply the Six Thinking Hats technique to explore different facets of the problem and generate potential solutions?	f a ing a vaste					
 CO3 1. "A group focuses on individual contribution, while a team must focus on synergy." Explain. 2. "Imagine you are part of a diverse team tasked with addressing a complex 							

TKM College of Engineering, Kollam (Govt. Aided and Autonomous)

	organizational challenge in a VUCA environment. Apply your knowledge of group formation and composition to strategically assemble a team that can effectively tackle the issue.
CO4	 Define integrity and point out ethical values Explain the role of engineers in modern society
CO5	 Distinguish between self-interest and conflicts of interest Explain the role of professional ethics in technological development.

24CF	1T307		PR	OCES	S SAFE	ŤΫ		L	Т	P	J	S	C	Yea Introd	r of uction
1.01								2	0	0	0	2	2	20	24
Pream	Preamble: The course "Process Safety" provides an understanding of the principles,														
practi	practices, and methodologies involved in ensuring the safety and integrity of process														
indus	tries. Th	is cou	rse em	phasiz	es the	identif	ication	of ł	iaza	ards	ass	soc	iateo	d with cl	hemical
proces	sses, wit	h a foc	us on p	prevent	ting inc	cidents	, prote	cting	g pe	rson	nel	, a	nd s	afeguard	ing the
enviro	onment.														
Prerec	uisite:]	Nil													
Cours	e Outcor	nes: Af	ter the	comple	etion of	the co	urse th	e sti	ıde	nt wi	ll b	e a	ble t	0:	
CO 1	Descril accide	be the ⁻ nts.	theorie	s of ac	cident	causati	ion and	l pre	ver	tive 1	me	ası	ıres	of indust	rial
CO2	Sugges	t effecti	ve strat	tegies fo	or fire p	reventi	on.								
CO3	Classify	y variou	as types	s of ha	zards p	resent	in the	proce	ess	indus	stri	es.			
CO4	Explain	n pers	onal p	orotecti	ve equ	uipmen	t, its	sele	ctic	on, s	afe	ety	per	formance	e &
	indicat	ors, an	d the 11	nporta	nce of I	nousek	eeping.			6 ·					
C05	Analyz elemen	e case ts, con	studie: tributin	s relate g to in	ed to th cidents	ie failu	re of pi	roces	ss s	satety	m	ana	agen	nent syst	em
					CO ·	- PO M	APPIN	G							
CO	PO1	PO2	PO3	P04	PO5	P06	P07	PC	8	POS)	PO	10	PO11	PO12
CO1	3														2
CO2	3					2									2
CO3	3					2							3		2
CO4	3					2		2	2						2
C05	3					2		2	2						2
					Asse	ssment	Patter	n							
				Conti	nuous	Assessi	nent T	ools							
Blo	oom's Ca	tegory		Tes	t1	Test	t 2	Oth too	er ls	En	d S	Sen	ieste	er Exami	nation
Remember 🖌 🖌 🖌															
Understand				~		V	·	V							
Apply				~		V	·	~							
Analy	rse							~							
Evalu	late							~							
Creat	e							~							
]	Mark D	istribu	tion of	CIA							

		The	eory [L- T]		
Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks

2-0-0-0	5	35	30)	30 100			
Total Mark distribution								
100		rksj	ESE (Marks)	ES	E Duration		
100	100	SYLL	BUS			<u>A</u>		
MODULE I: Safe	ty Introduction							
Concept and imp Risk, Accident, Reportable Accid	portance of proce Injury, Unsafe lents; Theories o	ss safety; D act, Unsa f accident c	efinitions of p fe Condition, ausation.	rocess Dange	safety term erous Occ	ns – Hazard, surrence, and		
MODULE II: Fur	ndamentals of Fi	re Process	es					
Chemistry of fir points; Ignition and fire protect Protection Syste	Chemistry of fire; Fire triangle, and tetrahedron; Flammability limits, flash, and fire points; Ignition sources, and their characteristics; Types of fire, Fire prevention systems, and fire protection systems – Examples of Active Fire Protection Systems, Passive Fire Protection Systems, fire detection, and alarm systems.							
MODULE III: Ha	zards in the Pro	cess Indus	tries					
Chemical Hazards – flammable chemicals, explosive chemicals, reactive chemicals, and toxic chemicals; Introduction to Physical Hazards, Electric Hazards, Mechanical Hazards, and Environmental Hazards; Provision of Hazard Information - Safety Data Sheets. MODULE IV : Personal Protection in Work Environment Personal protection in the work environment: Types of Personal protective equipment (PPEs), Standards related to PPEs; Monitoring Safety Performance: Frequency rate, severity rate, incidence rate, and activity rate; Housekeeping: Responsibility of								
MODULE V: Cas	e Study of Some	e Major Acc	idents in the	World				
Flixborough, UK - Brief description of facility and process, the accident, causes, circumstances, and consequences, Lessons/Recommendations; Seveso, Italy - Brief description of facility and process, the accident, causes, circumstances, and consequences, Lessons/Recommendations; Indian Oil Corporation product tank farm, Jaipur, India - Brief description of facility and process, the accident, causes, circumstances, and consequences, Lessons/Recommendations; Lessons/Recommendations; ISRO Sriharikota Space Launch Centre - Brief description of facility and process, the accident; causes, and consequences, Lessons/Recommendations;								
Textbooks								
 Daniel A. Crowl and Joseph F. Louvar, "Chemical Process Safety: Fundamentals with Applications" S. K. Biswas, U. Mathur and S. K. Hazra, "Fundamentals of Process Safety Engineering", 								

Refere	nce books						
1.	Frank P. Lees, "Loss Prevention in the Process Industries: Hazard Ident	ification,					
	Assessment, and Control",						
2.	2. Ferguson L.H., Janicak C.A., "Fundamentals of fire protection for the safety						
	professional", Scarecrow (2005).						
3.	CCPS (Center for Chemical Process Safety), "Process Safety for Enginee	ers: An					
	Introduction", Wiley (2022).						
	COURSE CONTENTS AND LECTURE SCHEDULE						
NT		No. of					
No.		Hours					
	MODULE 1 (4 HOURS)						
1.1	Introduction to Process Safety and Definitions of Process Safety Terms	1					
1.2	Hazard, Risk, Accident, Injury, Unsafe act, Unsafe Condition,	1					
1.3	Dangerous Occurrence, and Reportable Accidents	1					
1.4	Theories of accident causation.	1					
	MODULE II (6 HOURS)						
2.1	Chemistry of fire; Fire triangle, and tetrahedron	1					
2.2	Flammability limits, flash, and fire points	1					
2.3	Ignition sources, and their characteristics	1					
2.4	Types of fire, Fire prevention systems,	1					
2.5	Fire protection systems	1					
2.6	Examples of Active Fire Protection Systems, Passive Fire Protection Systems, fire detection, and alarm systems.	1					
	MODULE III (5 HOURS)						
3.1	Chemical Hazards - flammable chemicals, explosive chemicals,	1					
3.2	reactive chemicals, and toxic chemicals	1					
3.3	Introduction to Physical Hazards, Electric Hazards	1					
3.4	Introduction to Mechanical Hazards, and Environmental Hazards	1					
3.5	Provision of Hazard Information - Safety Data Sheets.	1					
	MODULE IV (5 HOURS)						
4.1	Personal protection in the work environment: Types of Personal protective equipment (PPEs),	1					
4.2	Standards related to PPEs	1					
4.3	Monitoring Safety Performance: Frequency rate, severity rate, incidence rate, and activity rate	1					
4.4	Housekeeping: Responsibility of management and employees	1					
4.5	Advantages of good housekeeping, 5S of housekeeping	1					
	MODULE V (4 HOURS)						
5.1	Flixborough, UK - Brief description of facility and process, the accident, causes, circumstances, and consequences, Lessons/Recommendations;	1					

5.2	Seveso, Italy - Brief description of facility and process, the accident, causes, circumstances, and consequences,	1
	Lessons/Recommendations;	
5.3	Indian Oil Corporation product tank farm, Jaipur, India - Brief description of facility and process, the accident, causes, circumstances, and consequences, Lessons/Recommendations	1
5.4	ISRO Sriharikota Space Launch Centre - Brief description of facility and process, the accident; causes, circumstances, and consequences, Lessons/Recommendations.	1

	CO Assessment Sample Questions
	Read the following scenario and answer the questions that follow: Scenario:
	A chemical manufacturing plant recently experienced a process safety incident
	that resulted in a major release of toxic gases. The incident occurred during a routine maintenance activity on a reactor vessel. As a result of the release,
	several workers were exposed to the toxic gases, leading to injuries and
	equipment and infrastructure.
_	(i) Identify the hazards associated with the incident described in the scenario.
1	(ii) Analyze the potential root causes of the incident. Discuss any unsafe acts or
	conditions that might have contributed to the release of toxic gases.
	(iii) Explain the importance of effective communication and coordination during
	maintenance activities to prevent incidents like the one described. What
	communication failures or breakdowns might have occurred in this scenario?
	(iv) Discuss the immediate actions that should be taken following such an
	incident to ensure the safety of the affected workers, mitigate further risks, and
	initiate the investigation process.
2	Differentiate between the various types of fires based on the fuel involved, such
2	as Class A, B, C, D, and K fires. Describe the appropriate fire extinguishing agents and strategies for each fire class.
	Explain the characteristics and hazards associated with flammable chemicals.
3	Discuss the factors that contribute to the flammability of chemicals and the precautions that should be taken to handle and store flammable substances safely.

	4	Discuss the role of leadership in promoting a culture of safety, including the use of PPE, monitoring safety performance, and maintaining effective housekeeping. Explain how leadership behaviors and attitudes influence employee engagement and compliance with safety measures.
	5	With respect to the Flixborough accident, answer the following questions: a) Provide a brief description of the facility and process involved in the
		Flixborough accident.
		b) Discuss the causes and circumstances that led to the Flixborough accident.
		c) Explain the consequences of the Flixborough accident in terms of human
		casualties, environmental impact, and property damage.
		d) Analyze the lessons learned from the Flixborough accident and provide
		recommendations for improving process safety in similar facilities.
_		

THIRD SEMESTER MINOR

24CHM309		INTRODUCTION TO CHEMICAL					L	Т	Р	J	S	C	Ye Intro	ar o duci	f tion	
			E	NGINI	SERIN	G		4	0	0	0		4	20	24	
Pream	Preamble: This course familiarize students with the concepts of units an equations									and						
of sta	of state. It also provides a brief overview of unit operations and unit															
proce	sses. f	luid f	low d	pera	tions	s. intro	oduct	ion	to p	roce	SS:	ins	str	umen	tati	on
and	contro	l. saf	etv i	n ch	emic	al pro	ocess	in	dustr	ies	an	d e	en	vironr	nen	tal
engin	eering	•	- 5			I										
Prereq	uisite :	Nil														
Course	Outco	mes: A	fter t	he co	mple	tion of	the c	cour	rse th	e stu	ıde	ent v	vil	l be al	ole t	.o
CO1	Expla engin profes	ain th leering ssion.	e his [.] g	tory,	role	of che	emica	l er	nginee	ering	g a:	nd	ch	emica	1	
CO2	Expla of expre	ain the	e bas	sic co ositio	oncep	pt of a	units Jatior	, d	limen f state	sion	s,	va	rio	ous m	leth	ods
CO3	Desci	ribe th	ie ba	sic co	oncer	ots of	flow o	diag	grams	, pro	oce	ess				
	instru	ıment	ation	and	1					, 1						
	conti	ol.														
CO4	Analy	vse typ	vical v	vaste	wate	r treat	ment	sys	stem.							
CO5	Expla	in th	e the	eories	s of	accide	ent c	aus	sation	and	1]	prev	/ei	ntive		
	meas	ures	of													
	indu	strial	accio	lents												
00	DO1	DOO	DOO	DO 4			DO7	NG			\ Τ	0.1	\	DO 1 1	D	10
001	2	P02	P03	P04	P05	P06	P07	1	100	PU	<i>,</i> ,	010	,	PUII	PC	1
C01	2	2									_		+			1
CO2	2	3									_		+			1
CO3	2					2	2				_		+			1
C04	2					2	ン 2				_		+			1
005	5				Δee	Accmar	t Dati	- orn								1
			C	nting	лээ 1011с A		nont T	\ool	c							
Bloom	n'e Cat	000#17		Toet	1	15505511 Toe	+ 2	001	s thar			End	S	emeste	r	
DIOOI	ii s cat	cgory		1030		105		to	ools			Exa	mi	ination		
Remember 4 4 4																
Understand				~			,		• •					• •		
Apply				v		· ·			· ·					· ·		
Analy	Analyse				•			· ·								
Evalu	ate								· ·							
Create	Create								v							
Mark D	istribu	ition o	f CIA				(

Course Structure	Attendance	The	ory [L- T]		Total		
[L-T-P-J]		Assignment	Test-1	Test-2	Marks		
4-0-0-0	5	15	15 10 10				
	Το	tal Mark distribut	ion				
Total Marks	CIA (Marks) ESE (N	Iarks)	ESE D	uration		
100	40	6	C	3 1	nours		
	End Semest	er Examination [E	SE]: Patterr	1			
PATTERN	PART A		PART B		ESE		
					Marks		
PATTERN 1	10 Questions each question carries 2 marks	2 questio from each modu 2 1 questio answered. can have a sub divisio	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions				
	Marks: (2x10 =20 marks) Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours						
	Total Marks: 2	0 Total Mark marks]	xs: [5x8 = 4	-0			

SYLLABUS

MODULE I: Introduction

Introduction to Chemical engineering: history of Chemical engineering, role of Chemical engineering broad overview; Chemical industries in India; introduction to Chemical engineering profession; introduction to chemical plant operation; process

development and process design.

MODULE II: Units, dimensions and mole concept

Basic concepts: units and dimensions, systems of units, conversion and conversion factors of units, concept of mole, weight percent, mole percent, normality, molarity, molality, vapour pressure, partial pressure, concept of ideal gas and equations of

state.

MODULE III: Introduction to fluid flow, process instrumentation and control

Overv	riew of unit operations and unit processes. Fluid flow –	laminar and					
flow.	introduction to transportation of fluids. Introduction	to process					
instru	instrumentation and control - Block diagram, Process flow diagram, basic						
conce	pts of P & I diagram, Measuring instruments: thermocou	ple, venturi					
meter	r, U-tube manometer.						
MODU	LE IV : Introduction to Environmental Engineering						
Intro	duction to Environmental Engineering- environmental leg	gislation					
	and regulation-water quality standards, Wastewat	er					
treat	ment methods - pretreatment -						
prima treatr	ary treatment - secondary treatment - tertiary treatment- nent	advanced					
meth	ods. Typical air and solid waste management systems.						
MODU	LE V : Introduction to safety in industries						
Need	for safety. Safety and productivity. Definitions: Accie	dent, Injury,					
Unsa	le act,	Theorics of					
onsal	e Condition, Dangerous Occurrence, Reportable accidents	ctions Role					
of ma	nagement supervisors workmen unions government ar	d voluntary					
ageno	vies in safety. Case study: Bhonal gas tragedy	ia voluntary					
Text b	ooks						
1. K.	V. Narayanan and B. Lakshmikutty, "Stoichiometry and Pr	rocess					
Ca	lculations", PHI learning Pvt. Ltd., Delhi						
2. R.I	K Jain (2000) Industrial Safety, Health and Environment ma	anagement					
sys	stems,	-					
Kh	anna Publications.						
Refere	nce books						
1. Ba	dger and Bachero, "Introduction to Chemical Engineering",	McGraw Hill					
2. Mo	CabenW.L., Smith J.C. and Harriott P. "Uni	t					
Op	perations in Chemical Engineering", McGraw Hill						
3. Pu	shpavanam S., "Introduction to Chemical Engineering", PHI	Learning					
Pv	t. Ltd.						
	COURSE CONTENTS AND LECTURE SCHEDULE						
No.		No. of					
		Hours					
	MODULE I (6 hours)						
1.1	Introduction to Chemical engineering: history of Chemical	1					
	engineering						
1.2	Role of Chemical engineering broad overview	1					
1.3	Chemical industries in India	1					
1.4	Introduction to Chemical engineering profession	1					

1.5	Introduction to chemical plant operation	1
1.6	Process development and process design	1
2.1	Units and dimensions, systems of units	1
2.2	Conversion and conversion factors of units	1
2.3	Concept of mole, weight percent	1
2.4	Mole percent, normality	1
2.5	Molarity, molality, vapour pressure	1
2.6	Partial pressure, concept of ideal gas and equations of state.	1
	MODULE III (8 hours)	'
3.1	Overview of unit operations and unit processes	1
3.2	Laminar and turbulent flow	1
3.3	Introduction to transportation of fluids	1
3.4	Introduction to process instrumentation and control	1
3.5	Block diagram, Process flow diagram	1
3.6	Basic concepts of P & I diagram	1
3.7	Measuring instruments: thermocouple	1
3.8	Venturi meter, U-tube manometer	1
	MODULE IV (7 hours)	1
4.1	Environmental legislation and regulation	1
4.2	Water quality standards	1
4.3	Wastewater treatment methods - pretreatment	1
4.4	Primary treatment, secondary treatment	1
4.5	Tertiary treatment, advanced treatment methods	1
4.6	Typical air pollution management systems.	1
4.7	Typical solid waste management systems.	1
	MODULE V (7 hours)	1
5.1	Need for safety	1
5.2	Safety and productivity	1
5.3	Definitions: Accident, Injury, Unsafe act, Unsafe Condition,	1
	Dangerous Occurrence, Reportable accidents	

5.4	Theories of accident causation	1
5.5	Safety organization- objectives, types, functions	1
5.6	Role of management, supervisors, workmen, unions, government and voluntary agencies in safety	1
5.7	Case study: Bhopal gas tragedy	1

	CO Assessment Sample Questions
1	Discuss the role of chemical engineers in controlling atmospheric pollution.
2	The mass velocity of a gas through a duct is 1000 kg/m ² h. Express the velocity in lb/ft ² s.
3	Explain the principle of venturi meter.
4	Describe the different methods of solid waste disposal practiced in India.
5	Explain the importance of safety measures in chemical industries with the help of Bhopal gas tragedy.

FOURTH SEMESTER

24CHT401	Chemical Engineering	L	Т	Р	J	S	C	Year of Introduction
	Thermodynamics	3	1	0	0	3	4	2024

Preamble:

This course aims to impart the basic concepts of Classical Thermodynamics. The topics included in the course are laws of Thermodynamics and their applications to open and closed systems and property relations for pure substances and solutions, concepts of Ideal and Non ideal solutions, phase equilibrium with special emphasis to Vapour Liquid Equilibria, Activity coefficient models and Chemical Reaction Equilibria. The major focus is to build a strong foundation in the subject and to familiarize with the applications of thermodynamic principles in chemical engineering problems.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1 Apply laws of thermodynamics to analyze various process.

CO2	Explain	thermody	vnamics	proper	ties, 1	process	and	states	of a	system.
	T		J	F - F -	/]					

CO3	Calculate	the	thermodynamic	properties	of	ideal/real	gases	and
	mixtures	/solu	tions.					

- **CO4** Explain VLE of completely miscible, partially miscible and immiscible liquids.
- **CO5** Calculate equilibrium constant and composition of reactions taking place

under given conditions.

CO - PO MAPPING												
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3			2							2
CO5	3	3										2

Assessment Pattern

	Continuous	s Assessment	Fnd Semester	
Bloom's Category	Test1 Test 2 Other tools tools		Examination	
Remember	v	 ✓ 	~	
Understand	v	 ✓ 	~	~
Apply	v	 ✓ 	~	~
Analyse			~	
Evaluate			~	
Create			~	

	М	ark Distributio	n of CIA				
Course		Theory [L- T]					
Structure [L-T-P-J]	Attendance	Assignment Test-1		Test-2	Marks		
3-1-0-0	5	15	10	10	40		

Total Mark distribution										
Total Mark	s	CIA (Marks)	ESE (Marks)	ES	E Duration					
100		40	60		3 Hrs					
End Semeste	er Ex	amination [ESE]: Pa	ttern							
PATTERN		PART A	PART B		ESE Marks					
PATTERN 1	PATTERN 1 Marks: (2x10 =20 marks)		 2 questions will from each module, out of 1 question showed answered. Each of can have a maximum subdivisions. Each question can a marks. 	be given of which uld be question um of 2 arries	60					
			Marks: (5x8 = 40 m Time: 3 hours	arks)						
	Total Marks: 20 Total Marks: [5x8 = 40 marks]									
SYLLABUS										
MODULE I: 1	herr	nodynamic system	and First law of therm	odynamics	3					

Overview of thermodynamics and its applications in chemical engineering: Basic

definitions: Thermodynamic system Open/Closed; terms and _ Thermodynamic properties- Extensive/Intensive, state; process (definition types); state/path functions- phase; Measurable properties and Temperature, Pressure & volume; Concept of Equilibrium- types- general conditions for equilibrium; Independent/dependent thermodynamic properties - Gibbs phase rule; PVT relationship for pure substances; phase diagram - triple line- critical properties- saturation pressure - vapour pressure.

Laws of thermodynamics: First law (statement) – forms of energy – work and heat; internal energy; Thermodynamic paths – reversible & irreversible processes (work, heat calculation) – use of hypothetical paths First law for closed and open systems (Energy balance equation derivation) – Enthalpy – Heat Capacity; Energy transfer during reversible processes in closed system – isothermal expansion/compression, adiabatic expansion/compression; Application of 1st law in process equipment: Nozzles; Thermodynamic cycles – Carnot cycle.

MODULE II: Second law of thermodynamics, Equation of States (EOS) & Property relations

Limitations of 1st law – Directionality of process - Second Law of thermodynamics - Carnot principles; Entropy – calculation of entropy change in closed/open system for ideal gases; Vapour compression refrigeration cycles.

Equation of States: Overview of intermolecular forces; Ideal gas equation – Compressibility factor; Equation of States for real gases- van der Waals equation, Redlich Kwong equation, virial equation; Principle of corresponding states; generalized compressibility charts.

Thermodynamic Property Relations: Types of thermodynamic properties – Measured/fundamental/derived, dependent/independent; fundamental property relations – Maxwell's equations; Relations for entropy change, internal energy change and enthalpy change in terms of independent variable (T,P & V); Calculation of entropy change, internal energy change and enthalpy change using EOS; Concept of departure functions(limited to definition); Joule Thomson expansion.

MODULE III: Phase Equilibria

Phase equilibrium of pure species – Gibbs free energy – Criteria of Chemical equilibrium in terms of Gibbs free energy; Relation between saturation pressure and temperature (Clapeyron equation); Clausius Clapeyron equation.

Phase equilibria in mixtures – Partial molar properties; Chemical potential; Gibbs-Duhem equations; property change of mixing (general expression and for ideal gases); Determination of partial molar properties (analytic method only, numerical limited to the application of van der Waals equation); Criteria of chemical equilibrium in terms of chemical potential; temperature and pressure dependence of chemical potential.

Fugacity – Criteria of chemical equilibrium in terms of fugacity; Ideal gas; fugacity and fugacity coefficient for pure gases (using EOS & generalized correlations), gas mixtures; Lewis fugacity rule; Ideal solution; Lewis/Randall rule; Henry's law.

Activity coefficient; Calculation of pure species fugacity – pointing correction factor; relation for activity coefficient from Gibbs-Duhem equations; Concept of excess properties; Excess Gibbs free energy.

MODULE IV : Activity Coefficient model & Applications of Phase equilibria

Models for activity coefficient using excess Gibbs free energy- 2-suffix Margules equation, van Laar equation.

Concept and applications of other activity coefficient models – Wilson equation, NRTL, UNIQAC;(limited to applications-equations not required).

Vapour Liquid Equilibria: Raoult's law & modified Raoult's law; K-value; bubble point, dewpoint and flash calculations; Non-ideal liquids; Azeotropes.

Overview of Liquid-liquid equilibrium.

Vapour-Liquid-liquid Equilibrium - Phase diagrams of partially miscible and immiscible systems; Colligative properties- Boiling point elevation/freezing point

depression.

MODULE V : Chemical reaction equilibria

Standard Gibbs energy of reaction; Equilibrium for a single reaction stoichiometric

coefficient, extent of reaction, reaction coordinate; Equilibrium constant and its temperature dependence; Relation of equilibrium constant to compositions involving gas phase; Equilibrium constant for liquid phase/solid phase reactions; Equilibrium constant for heterogeneous reactions; Effect of pressure and other parameters on conversion; multireaction equilibria.

Text books

1. Milo D. Koretsky, Engineering and Chemical Thermodynamics, 2nd Edn, Wiley, 2012

Refe	erence books								
1. 3	Smith J. M. & Van Ness H.V., Introduction to Chemica	ો							
	Engineering Thermodynamics, 8th Edn, McGraw Hill, 2018.								
2.	Naravanan K. V., A Textbook of Chemical Engineering Thermodynamics								
(2nd Edn., Prentice Hall of India, 2013.	-9 7							
3	Stanley I. Sandler. Chemical and Engineering Thermodynamics	2nd							
0. 1	Edn John Wiley & Sons USA 1080	, 2110							
1	Kule R.C. Chemical and Process Thermodynamics 3rd Edn. Dr	centice Uoll							
4	1000	entice-man,							
5 1	VVC Dee Chemical Engineering Thermodynamics Universitie	a Drago 1007							
J.	COURSE CONTENTS AND LECTURE SOURDULE	511085, 1997							
	COURSE CONTENTS AND LECTURE SCHEDULE	Nf							
No.		NO. OI							
		nours							
	MODULE I (10 hours)								
	Basic terms and definitions: Thermodynamic system –								
1.1	Open/Closed; Thermodynamic properties-	1							
	Extensive/Intensive, state; process (definition and types);								
	state/path functions- phase.								
	Measurable properties - Temperature, Pressure &								
1.0	volume; Concept of Equilibrium- types- general	1							
1.4	conditions for equilibrium; Independent/dependent	1							
	thermodynamic properties								
	– Gibbs phase rule.								
1.0	PVT relationship for pure substances; phase diagram –								
1.3	triple	I							
	line- critical properties- saturation pressure – vapour								
	pressure.								
	First law (statement) – forms of energy – work and heat;								
1.4	internal energy; Thermodynamic paths –	1							
	reversible & irreversible								
	processes (work, heat calculation) – use of hypothetical								
	paths.								
	First law (statement) – forms of energy – work and heat:								
1.5	internal	1							
	energy; Thermodynamic paths – reversible &	_							
	irreversible processes (work, heat calculation) – use								
	of hypothetical paths.								
	First law for closed and open systems (Energy balance								
1.6	equation	I							
	derivation).								
	Enthalpy – Heat Capacity; Energy transfer during								
1.7	reversible	1							
	processes in closed system – isothermal								
	expansion/compression, adiabatic expansion/compression.								

1.8	Enthalpy – Heat Capacity; Energy transfer during reversible	1
	processes in closed system – isothermal	
	expansion/compression, adiabatic expansion/compression.	
1.9	Application of 1st law in process equipment: Nozzles; Thermodynamic cycles – Carnot cycle.	1
1.1	Application of 1st law in process equipment: Nozzles; Thermodynamic cycles – Carnot cycle.	1
	MODULE II (10 hours)	
2.1	Limitations of 1st law – Directionality of process - Second Law of	1
	thermodynamics - Carnot principles.	
2.2	Entropy – calculation of entropy change in closed/open system for ideal gases: Vapour compression refrigeration cycles	1
	Overview of intermolecular forces. Ideal gas equation -	
2.3	Compressibility factor; Equation of States for real gase- van der Waals equation, Redlich Kwong equation, virial	1
	Principle of corresponding states: generalized	
2.4	compressibility charts.	1
2.5	Types of thermodynamic properties Measured/fundamental/derived, dependent/independent; fundamental property relations – Maxwell's equations.	1
2.6	Types of thermodynamic properties Measured/fundamental/derived, dependent/independent; fundamental property relations – Maxwell's equations.	1
2.7	Relations for entropy change, internal energy change and enthalpy change in terms of independent variable (T. P. & V)	1
2.8	Calculation of entropy change, internal energy change and	1
	enthalpy change using EOS.	
2.9	and	1
	Concept of departure functions (limited to definition):	
2.1 0	Joule Thomson expansion.	1
	MODULE III(10 hours)	

3.1	Gibbs free energy – Criteria of Chemical equilibrium in terms of	1
	Gibbs free energy.	
3.2	Relation between saturation pressure and	1
0	temperature	-
	(Clapeyron equation); Clausius Clapeyron equation.	
	Partial molar properties; Chemical potential; Gibbs-	
3.3	Duhem	1
	equations; property change of mixing (general expression and	
	for ideal gases).	
3.4	Determination of partial molar properties (analytic	1
	method only,	
	numerical limited to the application of van der Waals	
	equation).	1
3.5	chiena of chemical equilibrium in terms of chemical	L
	temperature and pressure dependence of chemical potential	
	Eugopity Criterial of chemical equilibrium in terms of	1
26	fugacity Ideal gass fugacity and fugacity coefficient for	1
5.0	rugacity, ideal gas, iugacity and iugacity coefficient for	
	FOR a regardling	
	EUS & generalized correlations).	1
27	fugacity	1
5.7	Ideal gas: fugacity and fugacity coefficient for pure gases	
	(using EOS & generalized correlations)	
	gas mixtures: Lewis fugacity rule: Ideal solution: Lewis/	1
3.8	Randall	
	rule; Henry's law.	
	Activity coefficient; Calculation of pure species fugacity -	1
2.0	pointing correction factor; relation for activity coefficient	
3.9	from Gibbs-Duhem equations; Concept of excess	
	properties; Excess	
	Gibbs free energy.	
	Activity coefficient; Calculation of pure species	1
2.1	fugacity –	
3.1	pointing correction factor; relation for activity coefficient	
0	from Gibbs-Duhem equations; Concept of excess	
	properties; Excess Gibbs free energy.	
	MODULE IV (8 hours)	
	Models for activity coefficient using excess Gibbs free	1
4.1	energy-	
	2-suffix Margules equation, van Laar equation.	
4.0	Models for activity coefficient using excess Gibbs free	1
4.2	energy-	

	2-suffix Margules equation, van Laar equation.	
4.3	Concept and applications of other activity coefficient models – Wilson equation, NRTL, UNIQAC;(limited to applications-equations not required).	1
4.4	Raoult's law & modified Raoult's law; K-value; bubble point, dewpoint and flash calculations.	1
4.5	Raoult's law & modified Raoult's law; K-value; bubble point, dewpoint and flash calculations.	1
4.6	Non-ideal liquids; Azeotropes Overview of Liquid-liquid equilibrium.	1
4.7	Phase diagrams of partially miscible and immiscible systems.	1
4.8	Colligativeproperties- Boiling point elevation/freezing point depression.	1
	MODULE V (8 hours)	
5.1	Standard Gibbs energy of reaction; Equilibrium constant and its	1
	temperature dependence.	
5.2	Standard Gibbs energy of reaction; Equilibrium constant and its temperature dependence	1
	Relation of equilibrium constant to compositions	1
5.3	involving gas phase.	1
5.4	Relation of equilibrium constant to compositions involving gas phase.	1
5.5	Equilibrium constant for liquid phase/solid phase reactions; Equilibrium constant for heterogeneous reactions.	1
5.6	Equilibrium constant for heterogeneous reactions,	1
5.7	Effect of pressure and other parameters on conversion; multi-reaction equilibria.	1
5.8	Effect of pressure and other parameters on conversion; multi-reaction equilibria.	1

	CO Assessment Sample Questions
1	Water at 90°C flowing at the rate of 2 kg/s mixes adiabatically with another
	stream at 30°C flowing at the rate of 1 kg/s. Estimate the rate of
	entropy generation and rate of energy loss due to mixing. Take T = 300 K
	Using Redlich-Kwong equation determine the molal volumes of saturated liquid and saturated vapour of toluene at 300 K. The
2	saturation pressure of methyl chloride at 300 K is 2 bar. The
	critical temperature and pressure are
	respectively 591.8 K and 41.09 bar.
	The azeotrope of the n-propanol-water system has a composition
3	56.83% water with a boiling point of 360.9 K at a pressure of 101.3
5	propagol respectively are
	64.25 kPa and 60.7 kPa. Evaluate the activity coefficients for a
	solution
	containing 20% water through the Van Laar equations.
	The need arises in a laboratory for 2000 cm ³ of an antifreeze solution
4	consisting of 30 mol % methanol in water. Determine the volumes of
	of antifreeze
	at 25°C.
	The reaction is $N_2(g) + O_2(g) \rightarrow 2$ NO (g) is carried out at 2700°C and
	2025 kPa. The reaction mixture initially comprises of 25 mol%
5	oxygen, 65 mol% nitrogen and the rest an inert gas. The standard
	Gibbs free energy change for the reaction is 113.83 kJ/mol at the
	the equilibrium reaction mixture. Make
	suitable assumptions, if required.

24CHT402	NUMERICAL METHODS FOR CHEMICAL ENGINEERS	L	Т	P	J	S	С	Year of Introduction
		2	1	0	0	2	3	2024

Preamble: Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution methods, which would otherwise be tedious or unsolvable by hand calculations. This course is designed to give an overview of numerical methods of interest to scientists and engineers. The course aims at giving adequate exposure to methods for numerically solving algebraic and transcendental equations, system of linear and non-linear equations, polynomial interpolation, integration, differentiation and differential equations.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to:

- **CO1** Identify the errors and its effect on numerical computations and solve polynomial and transcendental equation using an appropriate numerical method.
- **CO2** Solve linear and non-linear algebraic system of equations using an appropriate numerical method.
- **CO3** Apply different numerical methods for interpolation, differentiation and integration of functions.
- **CO4** Solve differential equations by different numerical methods.
- **CO5** Apply numerical techniques for solving chemical engineering problems.
- **CO6** Utilize the standard point-and-shoot numerical problem-solving capabilities of packages like Excel or MATLAB or Mathcad or any similar software.

CO	- PO	MAPPIN	IG

CO	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO10	PO11	PO12
CO1	3	3			3							2
CO2	3	3			3							2
CO3	3	3			3							2
CO4	3	3			3							2
CO5			2									3
CO6					3							3

Assessment Pattern

	Continuou	s Assessmen	End Semester Examination			
Bloom's Category	Test1	Test1 Test 2 Other tools				
Remember	 ✓ 	 ✓ 	~	 ✓ 		
Understand	 ✓ 	 ✓ 	~	 ✓ 		
Apply	 ✓ 	 ✓ 	v	✓		
Analyse			~			
Evaluate			v			
Create			v			
		-				

Mark Distribution of CIA							
Course Structue		Th	eory [L- T]				
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks		
2-1-0-0	5	15	10	10	40		

Total Mark distribution									
Total Marks CIA (Marks) ESE (Marks) ESE Duration									
100	40	60	3 hours						
	End Semester Examination (ESE) Pattern:								
PATTERN	PART A	PART B	ESE Marks						
Pattern 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x8=40 marks) Time: 3 hours	60						
	Total Marks: 20	Total Marks: $5 \ge 8 = 40$							
SYLLABUS									

MODULE I: Error analysis and Solution of non-linear equation

Errors in numerical calculations: Significant figures, Accuracy and Precision, Error definitions and numerical instability. Numerical solution of non-linear equations by bracketing (Bisection and False-Position) methods. Numerical solution of non-linear equations by open end (Fixed-point iteration and its convergence, Newton-Raphson and its convergence, Secant) methods. Case Studies: Roots of equations – Ideal and non-ideal gas laws, pipe friction. Solution of any two methods using software packages (Not included for test / end semester examination).

MODULE II: Solution of system of linear and non-linear algebraic equations

Numerical solution of simultaneous linear algebraic equations: Direct Methods – Gauss Elimination, Gauss Jordan and LU Decompositions (Doolittle Decomposition and Crout Decomposition). Iterative Methods – Jacobi iteration, Gauss-Seidal, Relaxation. Solution of system of non-linear equations by Newton-Raphson method. Case Study: Steady state analysis of a system of reactors. Solution of any two methods using software packages (Not included for test / end semester examination).

MODULE III: Numerical interpolation, integration and differentiation Polynomial interpolation. Lagrange's interpolation polynomial - divided differences Newton's divided difference interpolation polynomial - error of interpolation – finite difference operators - Gregory–Newton forward and backward interpolations. Numerical integration – Trapezoidal rule and Simpson's rules. Numerical differentiation using Newton's forward and backward formula. Case Study: Integration to determine the total quantity of heat. Solution of any two methods using software packages (Not included for test / end semester examination).

MODULE IV: Solution of Ordinary Differential Equations

Numerical solution of ordinary differential equations: Euler's method and Modified Euler's method, Runge–Kutta methods (2nd order and 4th order only) - multistep methods - Adam-Bashforth and Adam-Moulton formula. Solution of boundary value problems in ordinary differential equations - Finite difference method. Case Study: Use of ordinary differential equation to analyze the transient response of a unit process / operation. Solution of any two methods using software packages (Not included for test / end semester examination).

MODULE V: Solution of Partial Differential Equations

Numerical solution of partial differential equations: Solution of Laplace equation using Jacobi's and Liebmann's method. Solution of heat conduction equation using Schmidth and Crank-Nicolson method. Solution of wave equation with given boundary conditions. Case Study: One-Dimensional mass balance of a reactor/other suitable problem related to solution of partial differential equation. Solution of any two methods using software packages (Not included for test / end semester examination).

Textbooks

- 1. Steven C Chapra and Raymond P Canale, Numerical Methods for Engineers, 8th Edition, Mc Graw Hill.
- 2. Pradeep Ahuja, Numerical Methods in Chemical Engineering, PHI
- 3. Gerald C.F. and Wheatly P.O., Applied Numerical Analysis, Pearson
- 4. Jain M.K., Iyengar S.R.K. and Jain R.K., Numerical Methods for Scientific and Engineering Computation, New Age International

Reference books

- 1. Ajay K. Ray, Mathematical Methods in Chemical & Environmental Engineering, Thomson-Learning
- 2. Froberg C.E., Introduction to Numerical Analysis, Addison Wesley
- 3. Rajaraman V, Computer Oriented Numerical Methods, PHI
- 4. Hildebrand F.B., Introduction to Numerical Analysis, TMH
- 5. James M.L., Smith C.M. & Wolford J.C., Applied Numerical Methods for Digital Computation, Harper & Row
- 6. Mathew J.H., Numerical Methods for Mathematics, Science and Engineering, PHI

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE I (7 hours)	
1.1	Introduction to Numerical Methods. Errors in numerical calculations: Significant figures, Accuracy and Precision.	1
1.2	Error definitions and numerical instability.	1
1.3	Numerical solution of non-linear equations by bracketing method - Bisection	1
-----	--	---
1.4	False Position Method. Numerical solution of non-linear equations by open end method – Fixed point iteration and its convergence	1
1.5	Newton-Raphson and its convergence, Secant Method	1
1.6	Case Studies: Roots of equations – Ideal and non-ideal gas laws, pipe friction.	1
1.7	Solution of any two methods using software packages.	1
	MODULE II (6 hours)	
2.1	Numerical solution of simultaneous linear algebraic equations: Direct Methods – Gauss Elimination, Gauss Jordan	1
2.2	LU Decompositions (Doolittle Decomposition and Crout Decomposition).	1
2.3	Iterative Methods - Jacobi iteration, Gauss-Seidal	1
2.4	Relaxation. Solution of system of non-linear equations by Newton-Raphson method.	1
2.5	Case Study: Steady state analysis of a system of reactors.	1
2.6	Solution of any two methods using software packages.	1
	MODULE III (9 hours)	
3.1	Polynomial interpolation. Lagrange's interpolation polynomial	1
3.2	Divided differences. Newton's divided difference interpolation polynomial - error of interpolation	1
3.3	Finite difference operators, Gregory – Newton forward interpolations.	1
3.4	Gregory–Newton backward interpolations. Numerical integration – Trapezoidal rule.	1
3.5	Numerical integration - Simpson's rules.	1
3.6	Numerical differentiation using Newton's forward formula.	1
3.7	Numerical differentiation using Newton's backward formula.	1
3.8	Case Study: Integration to determine the total quantity of heat.	1
3.9	Solution of any two methods using software packages.	1
	MODULE IV (7 hours)	
4.1	Numerical solution of ordinary differential equations: Euler's method and Modified Euler's method	1
4.2	Runge-Kutta method (2nd order)	1
4.3	Runge-Kutta method (4th order)	1
4.4	Multistep methods - Adam-Bashforth and Adam-Moulton formula	1
4.5	Solution of boundary value problems in ordinary differential equations - Finite difference method.	1
4.6	Case Study: Use of ordinary differential equation to analyze the transient response of a unit process / operation.	1
4.7	Solution of any two methods using software packages.	1

	MODULE V (7 hours)	
5.1	Numerical solution of partial differential equations: Solution of Laplace equation using Jacobi's and Liebmann's method.	1
5.2	Solution of Laplace equation using Jacobi's and Liebmann's method.	1
5.3	Solution of heat conduction equation using Schmidth and Crank-Nicolson method.	1
5.4	Solution of heat conduction equation using Schmidth and Crank-Nicolson method.	1
5.5	Solution of wave equation with given boundary conditions.	1
5.6	Case Study: One-Dimensional mass balance of a reactor/other suitable problem related to solution of partial differential equation.	1
5.7	Solution of any two methods using software packages.	1

	CO Assessment Sample Questions
1a	Consider a ring-shaped conductor having total charge, Q. The radius of the ring is r. A charge q is located at a distance x from the centre of the ring. The force exerted by the ring on the charge is $F = \begin{bmatrix} 1 \\ 4\pi\epsilon_0 \end{bmatrix} \begin{bmatrix} aQx \\ a \\ x + r \end{bmatrix}^{3/2}$ where
	$\varepsilon_0 = 8.85 \times 10^6 \ N \ m^{-2}$. The radius of the ring is 1 m. Find the force at a distance of 50 cm if the values of q and Q are both 1 x 10-5 C. Round off the value at the third decimal place. Compute the force with the result rounded at the sixth decimal place. Compute relative error.
1b	A long electrically conducting metal rod having diameter D and electrical resistance R per unit length is placed in a large enclosure. The walls of the enclosure are far way from the rod. They are kept at a temperature Tw. The temperature of air flowing past the rod is Ta. If an electrical current I passes through the rod, the steady state temperature (T) of the rod can be found by solving the equation $\pi \left\{ h\left(T - T\right) + \emptyset\sigma\left(T - T - T\right) \right\} - IR_2 = 0$. In this equation, h is the heat transfer coefficient, σ is Stefan Boltzmann constant and \emptyset is the emissivity of the rod surface. Use the following data to obtain the steady state temperature T, by applying Newton Raphson method. $\sigma = 5.67 \times 10$ -8, $\emptyset = 0.8$, $h = 25$, Ta = Tw = 298, D = 0.12, IR^2 = 150. The initial estimate of the root is 298 and the error tolerance is 10-10.
2	Apply Gauss-Jordan method to solve the following system of equations: $ \begin{array}{rcl} x + y + z &= 9\\ 2x - 3y - 4z &=\\ 13\\ 3x + 4y + 5z &= 40\end{array} $
3	The velocity of a rocket can be computed from the following formula

	$v = 2 \times 10^3 \ln \left[\frac{10^5}{10^5 - 2 \times 10^3} \right] - 10 \text{ t}$, where v is in m/s and t is in seconds. Find an estimate of the distance the rocket will travel in 30 seconds, using Simpson's 1/3 rule.
4	Solve the equation below subject to the initial condition $(x, y, 0) = sin2\pi x sin2\pi y, 0 \le x, y \le 1$, and the conditions $u(x, y, t) = 0, t > 0$ on the boundaries. $\frac{\partial u}{\partial t} = \frac{-\partial^2 u}{\partial x^2} + \frac{-\partial^2 u}{\partial y^2}$ Obtain the solution up to three time level with $h = \frac{1}{-3}$ and $\alpha = \frac{1}{-8}$
5	Ethane may be assumed to obey the van der Waals equation of state, i.e., the pressure of one mole of gas occupying volume V at temperature T is given by $P = \frac{T}{V-b} - \frac{a}{V^2} \text{ where R is the gas constant, 0.082 litre atm mol-1 K-1. The work}$ done in isothermal compression of 1 mol of the gas from volume Vi to Vf is $W = \int_{V_1}^{V_1} \frac{1}{V-b} - \frac{a}{V^2} \frac{dV}{V}$ For ethane, a = 5.5 atm litres2 mol-2 and b = 0.065 litre mol-1. Estimate the work done for compressing the gas from 20 litres to 5 litres at temperature 300 K.
6	Solve the equation $x - cosx = 0$ by implementing the bisection method using a software tool. The lower and upper limits of the interval may be taken as 0 and 1, respectively. Terminate the computation of the root when the errors between two consecutive trials become 0.000001.

24CHP403	403 Fluid & Particle Mechanics				L	Т	P	J	S	С	Year of Introduction	
						2	1	2	0	4	4	2024
Droomblor	Thia	0011#00	in	dogigmod	to	0		in	to	0	0	omprohonging

Preamble: This course is designed to cultivate a comprehensive understanding of

fluid and particle mechanics, with a specific focus on their applications in the field of chemical engineering. It encompasses fundamental concepts such as fluid properties, momentum transfer, and particle distribution, all of which are integral to the process design in chemical engineering. The course will delve into the intricacies of flow in boundary layers, guiding students in understanding and applying these concepts. Moreover, students will learn to select appropriate flow measuring devices and fluid-moving machineries, essential skills for professionals in the chemical engineering sector. By the end of this course, students will have a robust understanding of fluid and particle mechanics, enabling them to apply these principles effectively in the operation of processes within the chemical

engineering field.

Prerequisite: Nil

-												
Course	Course Outcomes : After the completion of the course the student will be able to											
CO1	Apply the basic properties and transport laws to fluid in different conditions											
	like statics and dynamics.											
CO2	Apply suitable forms of the mass, momentum and energy balance equations											
	for se	olutio	n of n	umer	ical p	robler	ns in	fluid flo	ow.			
CO3	Calcu	ılate 1	najor	and n	ninor	losses	in pi	pe flow.				
CO4	Design a fluidized bed and a packed bed using the concept of fluid dynamics considering its application.											
CO5	Select values, pumps and flow measuring devices in process industries with the knowledge of the basic principles											
			0		CO -	- PO M	APPIN	G				
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3							2	2		2
CO 2	3	3										2
CO 3	3	3		3				2	3	3		2
CO 4	3	3		3				2	3	3		2
CO 5	3	3		3				2	3	3		2
			Asse	ssmen	t Patt	ern for	Theor	y comp	onent			
				Contin	nuous	Assess	ment '	Fools		End S	amasta	r
Bloo	om's Ca	ategory	7	Test1 Tes		Test	Test 2		Examination		L	
Remen	mber			~		V	·	~			~	

Understand	✓	v	~	v
Apply	~	v	~	~
Analyze			~	
Evaluate			~	
Create			~	

Assessment Patter	n for	Lab	comp	onent
		~		

,	Continuous Assessment Tools									
	Class work				Test1					
Remember										
Understar	ıd		v				 ✓ 			
Apply	v				v					
Analyse	✓ ✓				V					
Evaluate		/								
Create			v							
		Mark Distrib	oution of	CIA						
Course	Attendance	Theor	y [L- T]		P	racti	cal [P]	Total		
Structure [L-T-P-J]		Assignment	Test- 1	Test- 2	Cla wo	ıss rk	Lab Exam	Marks		
2-1-2-0	5	10	10	10		15	10	60		

Total Marks distribution								
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration					
100	60	40	2.5 Hours					
End Semester Examination [ESE]: Pattern								

PATTERN	PART A	PART B	ESE Marks
PATTERN 2		 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours 	40
	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Properties, classification of fluid and Fluid statics

Introduction to process fluid mechanics; Definition and properties (density and specific heat) of fluid; Continuum hypothesis; Velocity field; Stress field; Newtonian, non-Newtonian fluids and viscoelastic fluid.

Fluid statics: pressure variation in a static fluid, Hydrostatic forces on submerged

surfaces. Buoyancy; Illustration by examples.

MODULE II: Introduction to fluid flow and Basic equations of fluid flow

Macroscopic Balances: Derivation of integral balances for mass, energy and

momentum. Derivation of Bernoulli equation with losses. Application of macroscopic balances: Losses in expansion, Force on a reducing bend, Diameter of a free jet; Jet ejector.

Differential balances of fluid flow: derivation of continuity and momentum (Navier-Stokes) equations for a Newtonian fluid. Applications to plane Couette,

plane Poiseuille and pipe flows.

MODULE III: Internal flow of incompressible fluids in pipes and conduits

Dimensional analysis and similitude: Buckingham Pi-theorem and applications.

High-Reynolds number flows: inviscid flows and potential flows. Boundary layer theory: Boundary-layer formation in straight tubes, Boundary-layer separation and wake formation.

Pipe flows and fittings: laminar and turbulent flows, velocity distribution, universal

velocity-distribution. Friction factor charts, losses in fittings, flow in manifolds.

MODULE IV: Flow past immersed bodies (External flow)

Flow past immersed bodies: flow past a sphere and other submerged objects. Drag coefficient. Solid–fluid contacting systems.

Flow through packed beds: Ergun equation -Kozney-Carman equation - Blake Plummer equation.

Flow through fluidized beds: Type of fluidization, Different regimes of fluidization, Advantages and disadvantages of fluidized beds and packed bed. Agitation and

mixing: power consumption, mixing times, scale up.

MODULE V: Fluid Transportation

Flow measurement: Principle and working of Orifice meter, venturi meter, Pitot

tube, Rotameters, Weirs and Notches (derivation not required).

Brief introduction to non-conventional methods: Laser Doppler velocimetry, Particle image velocimetry, ultrasonic flow meters, electromagnetic flow meters (description only)

Pumps and compressors: Classification.

 R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics (6^t Edition), John Wiley & Sons, U.S.A (2003). J. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Ha (1999). McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engg. McGraw Hill. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon 	.h 11							
 Edition), John Wiley & Sons, U.S.A (2003). 2. J. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Ha (1999). 3. McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engg. McGraw Hill. 4. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon 	11							
 J. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Ha (1999). McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engg. McGraw Hill. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon 	11							
 (1999). 3. McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engg. McGraw Hill. 4. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon 								
 McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engg. McGraw Hill. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon 	(1999).							
Engg. McGraw Hill. 4. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon	3. McCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical							
4. Coulson J.M. & Richardson J.F., Chemical Engg. Vol. 1, Pergamon								
	•							
1. Foust AS, Wenzel LA, Clump CW, Maus L, Andersen LB. Principles								
of unit operations. John Wiley & Sons.	T:11							
2. Noel de Nerves, Fluid Mechanics for Chemical Engineers, McGraw F								
3. Streeter V.L., Fluid Mechanics, McGraw Hill.								
4. FTAILK M. WILLE, FILLU MECHANICS. MCGIAW HIL.								
5. 1. Nakayama, Fluid mechanics. Butterworth-nememann.								
	⊳f							
No.	re							
MODULE 1	15							
Introduction to process fluid mechanics								
1.1 Definition and 1								
properties (density and specific heat)								
1.2 Continuum hypothesis: Velocity field: Stress field								
1.2 Continuant hypothesis, velocity field, stress field	-							
1.3 Newtonian and non-Newtonian fluids and viscoelastic 1 fluid.	-							
1.4Fluid statics: pressure variation in a static fluid1								
1.5 Fluid statics: pressure variation in a static fluid 1								
1.6Hydrostatic forces on submerged surfaces1								
1.7Buoyancy; Illustration by examples1								
MODULE II								
2.1 Macroscopic Balances: derivation of integral balances 1								
mass, energy and momentum								
2.2 Derivation of engineering Bernoulli equation with losses.								
2.3 Derivation of engineering Bernoulli equation with losses.								
2.4 Application of macroscopic balances: Losses in expansion, Force on a reducing bend.								
2.5 Diameter of a free jet; Jet ejector 1								
Differential balances of fluid flow: derivation of								
2.6 continuity 1 and momentum (Navier-Stokes) equations for a								

2.7	Applications to plane Couette, plane Poiseuille and pipe	1
	MODULE III	
3.1	Dimensional analysis and similitude: Buckingham Pi-theorem and applications	1
3.2	High-Reynolds number flows: inviscid flows and potential flows.	1
3.3	Boundary layer theory: Boundary-layer formation in straight tubes.	1
3.4	Boundary-layer separation and wake formation.	1
3.5	Pipe flows and fittings: laminar and turbulent flows, velocity distribution.	1
3.6	Universal velocity-distribution-Friction factor charts.	1
3.7	Losses in fittings, flow in manifolds.	1
	MODULE IV	
4.1	Flow past immersed bodies: flow past a sphere and other submerged objects. Drag coefficient. Solid–fluid contacting systems.	1
4.2	Flow through packed beds: Ergun equation -Kozney- Carman equation - Blake Plummer equation.	1
4.3	Flow through fluidized beds: Type of fluidization	1
ΔΔ	Flow through fluidized beds: Type of fluidization	1
1.1	The initial function of the second se	1
4.5	Different regimes of fluidization,	1
4.6	Advantages and disadvantages of fluidized beds and packed bed	1
4.7	Agitation and mixing: power consumption, mixing times, scale up.	1
	MODULE V	
5.1	Flow measurement (derivation not required): Principle and	1
52	Pitot tube Rotameters	1
53	Weirs and Notches	1
5.4	Brief introduction to non-conventional methods: Laser Doppler velocimetry, Particle image velocimetry, ultrasonic flow meters, electromagnetic flow meters	1

	(description only).	
5.5	Pumps and compressors: Classification	1

LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of Hours	Experiment
1	Derivation of Bernoulli equation with losses.	2	Verification of Bernoulli's theorem
2	Flow through pipes: Laminar and turbulent flow, friction factor	2	Determination of Darcy's coefficient and Chezy's constant
3	Flow measurement: Principle and working	2	Coefficient of discharge for Venturi meter, Orifice meter
4	Flow measurement: Principle and working	2	Calibration of Venturi meter, Orifice meter
5	Flow through packed beds: Ergun equation	2	Determination of Pressure drop for flow through packed bed
6	Fluidization	2	Determination of minimum fluidization velocity and pressure drop profile
7	Flow measurement: Principle and working	2	Hydraulic coefficients of Orifice meter
8	Centrifugal pumps	2	Determination of Efficiency of a Centrifugal Pump
9	Fluid transportation	2	Characteristic study of single end suction pump
10	Flow measurement using Pitot tube	2	Coefficient of discharge for Pitot tube
11	Flow through open channels	2	Determination of coefficient of discharge for different types of weirs

12	Agitation and mixing: power consumption, mixing times, scale up.	2	Determination of Fluid Power Number
13	Pipe fittings, Flow control devices, Pressure and vacuum gauges	4	Study on: Pipe fittings Valves Plumber's tools Instruments for hydraulic flow measurements Pressure and vacuum gauges

CO Assessment Questions

1

i) Determine the distance between the mercury levels (H) in the U-tube manometer connected to a horizontal pipe transporting oil as shown in figure. The pressure at point X in the pipe is 7 kPa and the specific gravity of oil and mercury are 0.9 and 13.6 respectively.

ii) A solid cylinder 2 m in diameter and 2 m high is floating in water with its axis vertical. If the specific gravity of the material of cylinder is 0.65 find its metacentric height. State whether the equilibrium is stable or unstable.

A reducing elbow located in a horizontal plane (gravitational effects are unimportant), through which a liquid of constant density is flowing. The flexible connections, which do not exert any forces on the elbow, serve only to delineate the system that is to be considered;

they would not be used in practice, because the retaining forces
Fx and Fy would be provided by the walls of the pipe. Neglecting frictional losses, derive expressions for the following, in terms of any or all of the known inlet gauge pressure p1, inlet velocity u1, inlet and exit diameters D1 and D2 (and hence the corresponding cross-sectional areas A1 and A2), and liquid density ρ:
(a) The exit velocity u₂ and pressure p₂.

(b) The retaining forces Fx and Fy needed to hold the elbow in position. Calculate the two forces Fx and Fy if $D_1 = 0.20$ m, $D_2 = 0.15$ m, p1 = 1.5

	bar (gauge), u1 = 5.0 m/s, and ρ = 1,000 kg/m ³ (the liquid is water).					
	p_{2}, u_{2}					
	Flexible coupling -					
	F_x					
	coupling					
	$p_1, u_1 \longrightarrow D_1$					
	i) Water is pumped from a reservoir to a height of 1000 m from					
	the reservoir level, through a pipe of 15 cm I.D. at an average					
3	velocity of 4 m/s. If the pipeline along with the fittings is					
	equivalent to 2000 m long and the overall efficiency is 70 %,					
	pumping Friction factor f is given by $f = 0.046R$					
	Derive the Hagen Poiseuille equation starting from the basics.					
	ii) Calculate the flow rate of water (in liters per minute) required to fluidize					
4	a bed of 0.0625 m diameter lead shot (SG = 11.3). The bed is					
-	0.3048 m diameter, 1 ft deep, and has a porosity of 0.18.					
	Design an experiment to estimate the minimum fluidization					
	velocity and					
	entrainment velocity of particle in a given fluidized bed system.					
	i) A horizontal venturi meter with inlet diameter 150 mm and throat					
5	diameter 75 mm is used to measure discharge. The differential					
Ũ	manometer gives a reading of 150 mm of mercury. Determine the					
	iale of now 11 Cd 18 0.98.					
	discharge					
	coefficient for a given flow rate.					

24CHJ404	HEAT	` TRA	NSFE	R OP	ERAT	IONS		L	Т	P	J	S	С	Ye Intro	ar of duction
								2	0	2	2	5	5	2	024
Preamble:	The o	bject	tive	of th	ne co	ourse	is t	o fan	nili	ari	ize	th	e v	various	s steady
and uns	and unsteady state conduction heat transfer situations. This course														
provides an overall idea of convective heat transfer coefficient, laws of															
radiation, radiative heat flux and heat transfer mechanism with phase															
change 1	change like boiling and condensation. The knowledge of various heat														
transfer	mecha	anis	ms v	whic	h ar	e tau	ıght	in tl	nis	С	oui	se	is	usefu	l in the
design a	nd ana	alysi	s of v	vario	ous l	neat f	trans	sfer							
equipme	nts like	e hea	at ex	char	ngers	s and	evap	porate	ors	•					
Prerequisit	:e: Nil														
Course Out	comes:	After	the	comp	oletio	n of tl	ne co	urse t	he	stı	ıde	nt	will	l be able	e to:
CO1	Ident	ify a	nd d	istin	guisl	h var	ious	mode	es (of I	hea	it t	rai	nsfer a	nd
	exam	ine t	he .	1											
	mech	anısr	ns 1n	volve	ed	•		•	1		1			1	1 /
C02	Apply	app	ropri	ate g	overr	nng e	quat	ions a	nd	an	aly	se	cor	iduction	n heat
	trans	ier pi	coble:		or all	ierent	geor	netrie	s u	na	er	stea	aαy	r state a	ina
CO3	Solve	force	ed at	nd ng	ature	al con	vecti	on he	at	tra	net	fer	nra	hlems	using
000	empii	rical	cu ai	iu iii	ature		veen		aı	ua	1131		pro	50101113	using
	equat	ion													
CO4	Expla	uin th	ne co	ncep	ts be	hind	radi	ation	hea	at t	rai	nsfe	er a	and sol	ve
	radia	tion	heat	tran	sfer	probl	ems								
C05	Analy	ze th	e hea	at tra	insfe	r proc	esse	s invo	lve	d ir	ı b	oilii	ng	and	
	conde	ensat	ion									0			
C06	Desig	n of	hea	t ex	chan	gers	and	evapo	ora	tor	s a	afte	r i	interpre	ting the
	Dasic	nte													
	conce	pis			CO	- PO]	MAPP	ING							
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P	09	F	PO 1	0	PO11	PO12
CO1	3										+	_	-		
CO2	3	3		2							+				
CO3	3	3		2											
CO4	3	3		2											
CO5	3	3													
C06	3	3	3		2										

Assessment Pattern for Theory component					
	Continu	ous Assess	ment Tools	End Semester	
Bloom's Category	Test1 Test 2 Other tools		Other tools	Examination	
Remember	~	v	v	v	
Understand	 ✓ 	v	v	 ✓ 	
Apply	 ✓ 	v	v	 ✓ 	
Analyse			v		
Evaluate			v		
Create			v		

		Acc	sem	ent Pa	ttern for Le	ah c	omnone	nt			
		1100	,99111			tinı		essment Too	1e		
Bloom's Category					Class w	nrk	1043 M33		Teet1		
Remembe			01055 #	011	•						
Understa	nd				v				~		
Apply					· ·				· ·		
Analyse											
Evaluate									•		
Create											
Oreate		Asses	sme	nt Patt	ern for Pro	iec	t compo	nent			
	Continuous Assessment Tools										
]	Bloom's Cate	gorv		D 1			B 1	4: 0	-		
		0 0		Evalua	ation 1		Evalu	lation 2	керо	rt	
Remembe	er										
Understa	ind			1	/			v			
Apply				(/			v			
Analyse				(/			v			
Evaluate								v			
Create								v			
			I	Mark D	istribution	of	CIA				
		The	orv		Practical			Project			
Course	Attendance	I IIC IT	огу 701	T] [P]			[.]]		Total		
Structure		[12-	IJ				[0]		Marks		
[L-T-P-J]											
		Assig	nme	Test- Class Evaluatio		Evaluation Report					
		nt	-	2	work		n 1	2			
2022	-	1	<u>^</u>	10	1 🖻		-	10	Ę	60	
2-0-2-2	5	1	5	10	15		5	10	5	00	
			1	rotal M	larks distri	but	ion				
	CIA (Mar	rks)									
Total	·	,		ES	E (Marks)			ESE Duration			
Marks	60				40						
IUU End Seme	00 Stor Evamin	ation	FSF	1. Datt	40			2.5	Hrs		
PATTERN			EGE	j. I att	PART R			F	SF. Mar	ke	
	IANI	•	2 0	nestic	ns will	he	given		SE mai	A.5	
			from	l		be	given				
			each module, out of which								
	1 question should be										
		i	ansv	vered.	. Each	qu	estion				
can nave a maximum of 2 40							40				
PATTERN			subo	11V1S10	011S.						
4			Eacl	h qu	estion c	arr	ries 8				
					· · · · ·	~					
		:	mar	ks. M	arks: (5x	8 2	= 40				

		marks)	
		Time: 2.5 hours	
_			
	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Conduction

Basic Concepts - Overview of applications of heat transfer in different fields of

engineering, modes of heat transfer - conduction, convection and radiation, heat transfer with and without change of phase, material properties of importance in heat transfer - thermal conductivity, specific heat capacity, isotropic and anisotropic materials.

Conduction Heat Transfer - General heat conduction equation in cartesian coordinates

Formulation of heat transfer problems with and without generation of heat (uniform and non- uniform heat generation), one dimensional steady state heat conduction without

generation of heat: Fourier heat conduction equation,

thermal conductivity of solids, liquids and gases- comparison between them, effect of temperature on thermal conductivity, thermal diffusivity, conduction through systems of constant thermal conductivity - conduction through plane, cylindrical and spherical wall, numerical problems of practical importance based on the above topics.

Thermal insulation - Analysis of Critical radius of insulation for cylinders, optimum

thickness of insulation, concept of optimum thickness of insulation, numerical problems based on the above aspects.

MODULE II: Convection

Unsteady State heat Conduction - Analysis of transient heat flow with negligible internal

resistance-lumped capacity analysis, concept of Biot Modulus and Fourier number, Numerical problems of practical importance.

Convection - Mechanism, boundary layer concepts, thermal and velocity boundary layers,

boundary layer thickness, relationship between hydrodynamic and thermal boundary layer thickness for flow over flat plates, the convective heat transfer coefficient, reference temperatures, thermal boundary layers for the cases of flow over a flat plate.

Dimensionless numbers in convective heat transfer and their significance. Dimensional analysis Buckingham's pi theorem, its limitations, application of dimensional analysis to forced convection.

Forced Convection - General methods for estimation of convection heat transfer coefficient, correlation equations for heat transfer in laminar and turbulent flow for external and internal flows for constant heat flux and wall temperature conditions. flow over flat plates, numerical problems of practical interest.

Natural Convection - Dimensional analysis, natural convection from vertical and

horizontal surfaces under laminar and turbulent conditions for plates under constant heat flux and wall temperature conditions, physical significance of Grashof and Rayleigh numbers, numerical problems of practical interest. Analogy between momentum and heat transfer- Reynold's analogy.

MODULE III: Radiation, Boiling and Condensation

Heat transfer by radiation: Introduction- theories of radiation, electromagnetic spectrum,

thermal radiation, spectral emissive power, surface emission, total emissive power, emissivity, radiative properties- Emission, irradiation, radiosity, absorptivity, reflectivity and transmissivity, concept of black and gray body, radiation intensity, laws of black body radiation, non-black surfaces, gray, white and real surface, radiation between black surfaces and gray surfaces, , radiation shields.

Boiling and Condensation - Dimensionless parameters in boiling and condensation, pool boiling, boiling curve, hysteresis in the boiling curve, mechanism of nucleate boiling, modes of pool boiling.

condensation - physical mechanisms, types of condensation, factors affecting condensation, laminar film condensation on a vertical plate - detailed analysis by Nusselt to determine the heat transfer coefficient, drop wise condensation, comparison between

dropwise and film type condensation, promoters and inhibitors used in condensation.

MODULE IV: Heat Exchangers

Classification of Shell and tube heat exchangers - according to flow arrangements -

single- pass exchangers, multi-pass exchangers, classification according to heat transfer mechanisms, basic construction of a shell and tube heat exchanger with details of the various parts, Concept of overall heat transfer coefficient - derivation of expression for

overall heat transfer coefficient, Concept and types of fouling - fouling factors,

determination of overall heat transfer coefficient with and without fouling, derivation of expression for LMTD, concept of logarithmic mean temperature difference and its correction factor, heat exchanger analysis using LMTD method in parallel flow, counter flow exchanger, cross flow and multi- pass heat exchangers, temperature – distance plots for different flow arrangements in single and multi-pass heat exchangers, NTU, determination of area, length, number of tubes required for a given duty in different configurations using LMTD and NTU method of analysis.

MODULE V: Evaporators

Evaporation - Principle of evaporation, types of evaporators-their construction and

operation- short tube vertical or calandria type evaporators, single effect and multiple effect evaporators, performance of evaporators, capacity and economy of evaporators, factors affecting the performance of evaporators, overall heat transfer coefficient, effect of liquid head and boiling point elevation, material and energy balances for single effect evaporator and the calculations on single effect evaporator, numerical problems of practical interest, temperature profile in evaporators.

Multiple effect evaporators – Material and energy balance, Different feeding arrangements

in multiple feed evaporators

Text books

- 1. Datta B.K., Heat Transfer: Principles and Applications, Prentice Hall India.
- 2. McCabe W.L., Smith J.C. & Harriott P., Unit Operations in Chemical Engineering, McGraw Hill.
- 3. Hollman J.P., Heat Transfer, McGraw Hill.
- 4. R C Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, New age International Publishers.
- 5. M.Necati. Ozizik, Heat transfer A basic Approach, McGraw-Hill College.
- 6. Coulson J.M. & Richardson J.F., Chemical Engineering, Vol. I and II, ELBS, Pergamon Press.
- 7. Kern D.Q., Process Heat Transfer, McGraw Hill.
- 8. Geankopolis C J, Transport Processes and Separation Process Principles, Prentice Hall of India, 4th Edition, Eastern Economy Edition (2004).
- 9. Incropera F P and DeWitt D P, Introduction to Heat Transfer, 2nd Ed John Wiley New York (1996).
- 10. Welty J.R., Engineering Heat Transfer, John Wiley

COURSE CONTENTS AND LECTURE SCHEDULE						
No.		No. of				
		Hours				
MODULE 1						
1.1	Basic Concepts - Overview of applications of heat transfer in different fields of engineering, modes of heat transfer - conduction, convection and radiation.	1				

1.2	Heat transfer with and without change of phase, material properties of importance in heat transfer - thermal conductivity, specific heat capacity, isotropic and anisotropic materials.	1
1.3	Conduction Heat Transfer - General heat conduction equation in cartesian coordinates (derivation required).	1
1.4	Formulation of heat transfer problems with and without generation of heat (uniform and non- uniform heat generation), one dimensional steady state heat conduction without generation of heat: Fourier heat conduction equation,	1
1.5	Thermal conductivity of solids, liquids and gases- comparison between them, effect of temperature on thermal conductivity, thermal diffusivity. Conduction through systems of constant thermal conductivity - conduction through plane,	1
1.6	Cylindrical and spherical wall, numerical problems of practical importance based on the above topics. Thermal insulation - Analysis of Critical radius of insulation for cylinders, optimum thickness of insulation, concept of optimum thickness of insulation, numerical problems based on the above aspects.	1
	MODULE II	
2.1	Unsteady State heat Conduction - Analysis of transient heat flow with negligible internal resistance-lumped capacity analysis.	1
2.2	Concept of Biot Modulus and Fourier number, Numerical problems of practical importance.	1
2.3	Convection - Mechanism, boundary layer concepts, thermal and velocity boundary layers, boundary layer thickness,	1
2.4	Relationship between hydrodynamic and thermal boundary layer thickness for flow over flat plates, the convective heat transfer coefficient, reference temperatures, thermal boundary layers for the cases of flow over a flat plate. Dimensionless numbers in convective heat transfer and their significance. Dimensional analysis Buckingham's pi theorem, its limitations, application of dimensional analysis to forced convection	1
2.5	Forced Convection - General methods for estimation of convection heat transfer coefficient, correlation equations for heat transfer in laminar and turbulent flow for external and internal flows for constant heat flux and wall temperature conditions. Flow over flat plates, numerical problems of practical interest	1

2.6	Natural Convection - Dimensional analysis, natural convection from vertical and horizontal surfaces under laminar and turbulent conditions for plates under constant heat flux and wall temperature conditions, physical significance of Grashof and Rayleigh numbers, numerical problems of practical interest. Analogy between momentum and heat transfer- Reynolds's analogy.	1
	MODULE III	
3.1	Heat transfer by radiation: Introduction- theories of radiation, electromagnetic spectrum, thermal radiation,	1
3.2	Spectral emissive power, surface emission, total emissive power, emissivity, radiative properties- Emission, irradiation, radiosity, absorptivity, reflectivity and transmissivity, concept of black and gray body, radiation intensity	1
3.3	Laws of black body radiation, non-black surfaces, gray, white and real surface, radiation between black surfaces and gray surfaces, radiation shields.	1
3.4	Boiling and Condensation - Dimensionless parameters in boiling and condensation, pool boiling, boiling curve, Hysteresis in the boiling curve, mechanism of nucleate boiling, modes of pool boiling	1
3.5	Condensation - physical mechanisms, types of condensation, factors affecting condensation, Laminar film condensation on a vertical plate - detailed analysis by Nusselt to determine the heat transfer coefficient, Drop wise condensation, comparison between dropwise and film type condensation, promoters and inhibitors used in condensation	1
	MODULE IV	
4.1	Classification of Shell and tube heat exchangers - according to flow arrangements - single-pass exchangers, multi- pass exchangers, classification according to heat transfer mechanisms	1
4.2	Basic construction of a shell and tube heat exchanger with details of the various parts, Concept of overall heat transfer coefficient - derivation of expression for overall heat transfer coefficient.	1
4.3	Concept and types of fouling - fouling factors, determination of overall heat transfer coefficient with and without fouling, derivation of expression for LMTD, concept of logarithmic mean temperature difference and its correction factor,	1

4.4	Heat exchanger analysis using LMTD method in parallel flow, counter flow exchanger, cross flow and multi-pass heat exchangers, temperature – distance plots for different flow arrangements in single and multi-pass heat exchangers, NTU, determination of area, length, number of tubes required for a given duty in different configurations using LMTD and NTU method of analysis	1
	WODULE V	
5.1	Evaporation - Principle of evaporation, types of evaporators-their construction and operation - short tube vertical or calandria type evaporators, single effect and multiple effect evaporators	1
5.2	Performance of evaporators, capacity and economy of evaporators, factors affecting the performance of evaporators, overall heat transfer coefficient	1
5.3	Effect of liquid head and boiling point elevation, material and energy balances for single effect evaporator and the calculations on single effect evaporator, Numerical problems of practical interest, temperature profile in evaporators.	1
	Multiple effect evaporators – Material and energy balance, Different feeding arrangements in multiple feed evaporators	

LAB COMPONENT

Including laboratory experiments in a course is an excellent way to enhance the understanding of various concepts in the syllabus. It provides students with hands-on experience and practical application of the theoretical knowledge they acquire in the classroom. It also fosters critical thinking, problem-solving, and practical skills that are valuable in their academic and professional pursuits. Here are some key points to consider when incorporating laboratory experiments into a course:

Alignment with Course Objectives: Ensure that the laboratory experiments align with the course objectives and learning outcomes. The experiments should reinforce and complement the concepts taught in the classroom.

Relevance: Select experiments that are relevant to the course material and provide real-world examples of the concepts being discussed. This helps students see the practical applications of what they are learning.

Safety: Safety is paramount in a laboratory setting. Make sure that all experiments are conducted in a safe environment, and students are aware of the safety protocols and precautions.

Equipment and Materials: Ensure that the necessary equipment and materials are available and in good working condition. Students should have access to the tools and resources needed to conduct the experiments effectively.

Clear Instructions: Provide clear and detailed instructions for each experiment. This should include the purpose of the experiment, the procedures to be followed, data collection methods, and any specific requirements.

Data Analysis and Interpretation: Include a component for data analysis and interpretation in the laboratory reports. This encourages critical thinking and helps students draw meaningful conclusions from their experiments.

Variety: Offer a variety of experiments that cover different aspects of the course material. This can include quantitative experiments, qualitative observations, and even open-ended, exploratory experiments.

Feedback and Assessment: Develop a system for assessing and providing feedback on students laboratory reports and performance. This assessment should contribute to their overall course grade.

Integration with Theory: Encourage students to connect the results of their experiments with the theoretical concepts discussed in the classroom. This reinforces their understanding and helps bridge the gap between theory and practice.

Practical Skills: Besides reinforcing theoretical knowledge, laboratory experiments should also help students develop practical skills, such as experimental design, data collection, and analysis.

Reflection: Encourage students to reflect on their experiences during the experiments. This can be done through post-lab discussions or written reflections, allowing students to think critically about what they learned.

Flexibility: Be open to adapting the laboratory component as needed. Sometimes, students may discover unexpected results or encounter challenges. This flexibility can turn such situations into valuable learning experiences.

Resources and Support: Provide access to resources, including lab manuals, research papers, and additional readings, to help students delve deeper into the concepts explored in the experiments.

No.	Торіс	No. of Hours	Experiment
1	Conduction: Fourier's law	2	Heat transfer through composite walls
2	Thermal insulation	2	Heat transfer through lagged pipe
3	Thermal conductivity of solids	2	Thermal conductivity of metal rod
4	Thermal conductivity of solids	2	Thermal conductivity of Liquid experiment
5	Convection	2	Natural convection experiment
6	Forced Convection	2	Apparatus
7	Unsteady state heat conduction	2	Unsteady state experiment
8	Heat transfer by radiation	2	Emissivity measurement
9	Boiling and Condensation	2	Study on Vertical condenser
10	Heat exchanger	2	Parallel flow/Counter flow heat exchanger

LESSON PLAN FOR LAB COMPONENT

COURSE PROJECT

Incorporating a project component in a course complements theoretical learning and laboratory experiments by providing students with the opportunity to synthesize, apply, and deepen their understanding of course concepts. It also encourages critical thinking, problem-solving, and creativity, which are valuable skills for students academic and professional growth. Here are some key points to consider when including a project component in a course to cover the concepts from the syllabus:

Alignment with Course Objectives: Ensure that the project aligns with the course

objectives and learning outcomes. The project should provide an opportunity for students

to apply the theoretical knowledge they have gained.

Relevance: Select project topics that are directly related to the course material. The project should enable students to explore and apply the concepts covered in the classroom and laboratory sessions.

Project Types: Consider various project types, such as group projects, case studies, or practical applications. The choice of project type should depend on the course goals and the specific concepts being covered.

Clear Guidelines: Provide clear project guidelines and expectations. Include information on project deliverables, deadlines, and assessment criteria to ensure that students understand what is expected of them.

Student Choice: If possible, allow students to choose project topics that align with their interests or career goals. This can increase motivation and engagement.

Resources and Support: Ensure that students have access to the necessary resources, including literature, software, equipment, or guidance from instructors or mentors.

Interdisciplinary Approach: Encourage interdisciplinary projects that draw on concepts from multiple areas of the syllabus. This can promote a holistic understanding of the subject matter.

Peer Collaboration: Encourage collaboration among students for group projects. Teamwork can foster problem-solving skills and diverse perspectives.

Reflection and Presentation: Require students to reflect on their project experiences and present their findings to the class. This promotes critical thinking and communication skills.

Assessment Criteria: Clearly define how the project component will be graded. Assess not only the final product but also the process, research, problem-solving, and communication skills.

Feedback and Revision: Provide feedback on project proposals and guide students in the right direction. Allow them to revise and improve their work based on feedback.

Integration with Theory and Lab: Emphasize the connection between the project and the theoretical and laboratory components of the course. Encourage students to apply what they have learned in these sessions to their projects.

Real-World Applications: Whenever possible, choose projects that have realworld applications. This can help students see the practical relevance of their coursework. Sample project topics for students to work on:

Water flows through a shower head steadily at a rate of 8 Kg/min. the water is

heated in an electric water heater from 15 °C to 45 °C. In an attempt to

- ¹ conserve energy, it is proposed to pass the drained warm water at a temperature of 38 °C through a heat exchanger to preheat the incoming cold water, design a heat exchanger that is suitable for this task, and discuss the potential savings in energy and money of your area.
- Contact a manufacturer of Aluminum heat sinks and obtain their product catalog for
- ² cooling electronic components by natural convection and radiation, explain in detail on how select a suitable sink for an electronic component when it its maximum power dissipation and maximum allowable surface temperature are specified.
- Investigate the thermal properties of different types of clothing materials. 3 Measure how quickly they conduct heat and how well they insulate. Consider the practical implications for personal comfort in different weather conditions.

LESSON PLAN FOR PROJECT COMPONENT

No.	Торіс	No. of Class Hours [24]
1	Preliminary Design of the Project	4
2	Zeroth presentation (4 th week)	2
3	Project work - First Phase	4
4	Interim Presentation (7 th and 8 th weeks)	4
5	Project work - Final Phase & Report writing (discussions in class during project hours)	6
6	Final Evaluation and Presentation (11 th and 12 th weeks)	4

	CO Assessment Questions (Sample)
	a) Explain in detail the different modes of heat transfer?
	b) A composite wall of a furnace is made of two materials A and B. The
1	thermal conductivity of A is twice that of B, while the thickness of layer
T	A is half of that of
	C. If the temperature at the two sides of the wall are 400 and 1200 K
	respectively, then, determine the temperature drop across the layer of
	material A?
	c) Explain the effect of temperature on thermal conductivity by
	conducting an experiment. Write a note on thermal conductivity of
	solid, liquid and gas.

- a) Derive the general conduction equation in Cartesian coordinates?
- b) A furnace wall is made up of steel plate 10 mm thick (k=15 Kcal / hr m °C) lined on inside with silica bricks 150 mm thick (k= 1.75 kcal/hr moC) and on the outside with magnesia bricks 200 mm thick (k=4.5 kcal/hrmoC). The inside and outside walls are at 650 °C and 125 °C resp. Calculate the resistance of the composite wall and the total heat loss through the wall?
- c) Differentiate between natural and forced convection. List the examples of these two processes in the Heat transfer operations laboratory
- d) Explain the concept of boundary layer.
- e) Calculate the heat transfer coefficient for a fluid flowing through a tube having inside diameter 40 mm at a rate of 5500 kg/h. Assume that the fluid is being heated Properties of the fluid at mean bulk temperature are: $\mu = 0.004 \text{ kg/ms}$, $\rho =$

1.07 g/cc, Cp = 2.72 kJ/ kg K, k = 0.256 W/m K.

a) Define emissive power.

2

- 3 b) State and explain laws of radiation.
 - c) Derive the expression for net radiant energy exchange between two large parallel planes
- 4 a) How are heat exchangers classified?
 - b) Write down the material and energy balances for a single effect evaporator system.
 - c) A counterflow shell and tube heat exchanger is to be used to cool water from 27 °C to 6 °C using brine entering at -2 °C and leaving at 3 °C. The overall heat transfer coefficient is estimated to be 500 W/m² °C. Calculate the heat transfer
 - surface area for a design heat load of 10 kW.
- 5 Discuss the material and energy balance calculations of a single effect evaporator.

24HU	Т46	E	NTR	EPRI	ENEU	RSH	[P	L	, T	Р	J	S	С	Ye Intro	ar of ducti
5	0			AND	STA	RTUI	PS							on	
								3	0	0	0	3	3	20	024
Preamble: The goals of this course are to inspire students and help them imbibe an entrepreneurial mindset. The students will learn what entrepreneurship is and how it has impacted the world and their country. They will be introduced to key traits and the DNA of an entrepreneur, and be given an opportunity to assess their own strengths and traits that are needed to become a successful entrepreneur. The course comprises of five modules, each focusing of a specific entrepreneurial knowledge or skill requirement such a creative thinking, communication, risk-taking, and resilience. Prerequisite: Nil										l help learn 1 and NA of r own essful ng on ch as					
Cours	e Ou	itcom	es: A	fter t	he co	mplet	ion c	of tł	ne c	cou	rs	e t	he	e stud	.ent
Will be	e abl	e to velon a	ware	ness	abou	t enti	renre	ากคา	irs	hir	าล	nd	S	licces	sful
001	ent	reprer	ieurs		abou		cpre	,110.0	110	ιιρ	<i>i</i> a	ina		ucces	Siui
CO2	Dev	elop a	an er	ntrepr	eneur	rial n	ninds	set	by	pe	rfo	orm	nir	ng ma	arket
<u> </u>	rese	earch	and	evalua	ating	oppor	tuni	ties	+	4		~			
C03	Des	the lo	egai i	inono	s asso		a wi	th s	atar	τ-υ of	ip:	s ad	ot	ortun	
CO5	Des sca	cribe ling ve	growt	th states.	ges in	n new	ven		es a	and	l r	reas	SO1	ns for	
со	PO	PO2	PO3	PO4	PO5	P06	PP 11	7 P	08	PC)	PO	1	PO1	PO12
	1									9		0		1	
CO 1	3											2	2		2
CO 2	3											3	;		2
CO 3	3					3						2	2		2
CO 4	3											2	2	3	2
CO 5	3									3	6	2	2	3	2
				Ass	sessm	ient 1	Patt	ern							
Blo	om's			Cont Tools	inuoı ;	ıs As	sess	me	nt			Er	ıd	Sem	ester
Cat	egor	y	-	Те	st1	Tes	st 2	Ot to	her ols	Examination					
Reme	nber]								
Under	rstar	ıd]								
Apply]]						
Analy	se														

Evalua	te								
Create			Mogila D	iateihuti	~ ~				
-			Mark D	istributi	оп Т1		<u>.</u> 171		
Course					11				Tota
Structu	1	Att	tendance	Assignr	ne	Test-	Test	-2	1
re [L-T-			nt		1			Mark	
P-J]									s
3-0-0	-0		5	15		40			
			Total I	Mark dis	trib	ution			
Total Marks	CIA (Ma	A arks)	ESE (1	Marks)]	ESE Du	ratio	n
100		40	60				3 hour	ŝ	
End Ser	mes	ster Exa	<u>amination</u>	[ESE]: P	att	ern			
PATTE	R	P	PART A		Ρ.	ART B		ESE	Marks
IN		10 011	estions	2 011	oati		rill he		
		each	03110113,	z qu given	csu	from	each		
		questic	on	modul	e, c				
		carries	2	questio	n				
PATTER	KIN	marks		answe	red	•	Each		
1				questio	on	can ł	nave a		60
				maxim	um	ı of '∠	sub-		
		Marke	$(2 \times 10 = 20)$	01V1S10	ns.				
		marks)	(2810 20	Each	que	estion ca	arries		
		maritoj			8 m	arks.			
				Marks:	(5x	x8 = 40			
				marks)	Tir	ne: 3 ho	ours		
		Total N	Iarks: 20	Total N	Iarl	ks: [5x8	= 40		
			S	marks]	3				
MODU	LE	I: Intro	oduction t	o Entre	pre	neursh	ip		
Meanin	ng	and c	concept of	entrep	ren	eurship	, the	histo	ory of
entrepr	rene	urship	developm	ient, M	lyth	is abo	out en	trepre	eneurs,
entrepr	ene	urship	and e	conomic	ľ	nanagei	ment,	-	the
entrepr	rene	urial	ecosystem	, types		of en	treprene	eurs,	
Entrep	ren	eurship	in India.				_		
MODU	LE	II: Idei	ntifying op	oportuni	tie	s and l	Busines	s Pla	n

The Entrepreneurial process, opportunity identification, Market Research for Entrepreneurship, Evaluating opportunities.

The concept of a business plan, the need of a business plan, contents of a

business plan, making the business plan, presenting the business plan.

MODULE III: Start-up Legal issues

The Legal Environment, forms of organization, Approval of new ventures, Taxes

and duties payable, intellectual property, franchising.

MODULE IV: Startup Financial issues

Types of finance, estimating capital cost of project, securing finance, Sources of

finance, What Lenders and investors look for?

MODULE V: Starting up- The Human angle, Venture Survival and Growth

Individual or Team Start-up, acquiring influence by

networking, leadership, designing the organization, organization culture.

Venture life patterns, start-up phase, early growth, changes in management style

and organization design. New venture failures.

Textbooks

1. Anjan Raichaudhuri, Managing New Ventures Concepts and Cases, Prentice

Hall International, 2010.

Reference books

- 1. Kathleen R Allen, Launching New Ventures, An Entrepreneurial Approach, Cengage Learning, 2016.
- 2. S. R. Bhowmik & M. Bhowmik, Entrepreneurship, New Age International 2007.
- Steven Fisher, Ja-nae' Duane, The Startup Equation -A Visual Guidebook for Building Your Startup, Indian Edition, Mc Graw Hill Education India Pvt. Ltd, 2016.
- Donald F Kuratko, Jeffrey S. Hornsby, New Venture Management: The Entrepreneur's Road Map, 2e, Routledge, 2017.
- 5. Vijay Sathe, Corporate Entrepreneurship, 1e, Cambridge, 2009

COURSE CONTENTS AND LECTURE SCHEDULE

No		No. of
110.		Hour
	MODULE 1 (6 hours)	S
1.1	Meaning and concept of entrepreneurship, the history of entrepreneurship development.	1
1.2	Myths about entrepreneurs, entrepreneurship and economic management.	1
1.3	Myths about entrepreneurs, entrepreneurship and economic management.	1
1.4	The entrepreneurial ecosystem, types of entrepreneurs.	1
1.5	the entrepreneurial ecosystem, types of entrepreneurs.	1
1.6	Entrepreneurship in India.	1
	MODULE II (7 hours)	
2.1	The Entrepreneurial process, opportunity identification.	1
2.2	Market Research for Entrepreneurship, Evaluating opportunities.	1
2.3	Market Research for Entrepreneurship, Evaluating opportunities	1
2.4	The concept of a business plan, the need of a business plan.	1
2.5	Contents of a business plan.	1
2.6	Making the business plan, presenting the business plan.	1
2.7	Making the business plan, presenting the business plan.	1
	MODULE III (7 hours)	1
3.1	The Legal Environment.	1
3.2	Forms of organization.	1
3.3	Approval of new ventures.	
3.4	Taxes and duties payable.	1
3.5	Taxes and duties payable.	1
3.6	intellectual property, franchising.	1

3.7	Taxes and duties payable.	1			
MODULE IV (7 hours)					
4.1	Types of finance.	1			
4.2	Estimating capital cost of project.	1			
4.3	Estimating capital cost of project.	1			
4.4	Securing finance.	1			
4.5	Sources of finance.	1			
4.6	Sources of finance.	1			
4.7	What Lenders and investors look for?	1			
MODULE V (7 hours)					
5.1	Individual or Team Start-up.	1			
5.2	Acquiring influence by networking.	1			
5.3	Leadership, designing the organization, organization culture.	1			
5.4	Leadership, designing the organization, organization culture.	1			
5.5	Venture life patterns, start-up phase.	1			
5.6	Early growth, changes in management style and organization design.	1			
5.7	New venture failures.	1			

CO Assessment Sample Questions Describe the role of entrepreneurship in a developing 1 economy. You are an entrepreneur who wish to start a new venture in the State of Kerala. Describe the methods to perform market 2 research to identify opportunities. List the entrepreneurial traits and disciplines that are necessary to become a successful entrepreneur. List the taxes and duties payable while starting up a new 3 venture. Explain the role of microfinance institutions in financing 4 entrepreneurs. List the unique funding issues associated with high-tech 5 ventures.

24	IMCT	406	E	Enviro	nmen	ıtal		L	Т	P	JS	С	Yea Intro n	ar of ductio
			~		03			3	0	0	0 3	0	20	24
Prea	amble	e: En	viror	menta	al Scie	ences	is a s	spec	iali	zed	cour	se	designe	ed to
provide engineering students with a solid foundation in environm							vironme	ental						
prin	nciples	s and	the	ir app	licatio	ation to engineering practice. The cour						ourse		
aim	s to	enh	ance	e stud	dents	und	dersta	ndin	ıg	of t	he	env	vironmo	ental
cha	llenge	es ass	ocia	ted wi	th en	iginee	ering a	activ	itie	s a:	nd	eq	uip 1	them
with	n the	e kn	owle	dge a	and	skills	to	inte	gra	te	envi	ron	mental	
con	sidera	ations	into	o their	futu	re eng	gineer	ing v	wor	·k.				
Prere	equis	ite: N	il											
Cour be of	se O	utcon	nes:	After	the co	omple	etion c	of th	e c	ours	e th	e st	tudent	will
	Ide	ntifv	ecos	vstem	comt	ooner	nts an	d th	rea	ts.				
1	1010		0000	9.000111	00111			01 011	200					
co	Des	scribe	the	air ar	nd no	ise p	ollutic	on p	rob	lem	s an	d tł	neir	
$\frac{2}{CO}$	SUS	staina	the	solutio	ons.	woote	motor	. 0110	-1i+		ndi	ita 1	reatm	ont
3	Die	cuss	the	water	anu	wasit	water	qua	anı.		inu i		licatin	
СО	Ex	plain	the	variou	s typ	es of	solid '	was	te a	and i	its n	nan	ageme	nt
4	stra	ategie	s.		1		C 1.					1		
5	Ass	sociat nate s	e ca actio	uses a	ina ei	nects	of chi	mat	e ci	nang	ge ai	na	sugges	τ
	0111	nate		110.	CO	- PO	MAPF	PING	r					
CO	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO	8]	PO9	PO	10	PO11	PO12
			3											
CO 1	1	3					1				2	2		1
CO 2	3					2	1							
СО	3					2	1							
3	-					-								
	3					2	1							
CO	3	3		2		3	2				2	?		2
5														
					Asses	ssme	nt Pat	tter	n					
-	•	_		Cor Too	itinu ols	ous A	Assess	me	nt]	End	1	
BIC	om's tego r	5		Tes	st1	T	est 2	(Dth	e		Seı	nester	
Ca	legui	y						1	•			Exa	aminat	ti
								1	too	ls		on		
Rem	embe	er												
Und	lersta	nd									ν			

Apply											
Analyse						\checkmark					
Evaluate						\checkmark					
Create											
			Mark	x Distrit	oution	of CIA	L				
			e		Theo	ry [L- 1	r]	_			
Course Struc	Course Structure		Attendan	Assignme		Test-1	Test-2		Total Marks		
[L-1-]	P-J]		~	1 -	•	10	10		40		
3-0-0	-0		5	15	نوب کرد تولد	10	10		40		
		~1			aistri						
	rks	CL	A (Marks	s) E:	SE (M	arksj	E		ration		
TOU End Some	-	P	40		00			3 hours			
End Seme	ster	<u>сха</u> р	<u>.minatio</u>	n [ese]	<u>Patt</u>	ADT D		FCF I	To elea		
PATTERN 1	10 eac car man Man man	Que h ries rks. rks: rks) al M	estions, n 2 (2x10 =2 [arks: 20	0 2 give mod que ans que max sub Eac mar Mar Tim	questi n lule, c stion wered stion divisio h que ks. ks: (52 ks: (52 ks: l Marl ks]	from from out of v shou can can can stion c $x^8 = 40$ ours cs: [5x8]	will be each which 1 ild be Each have a of 2 earries 8 marks) 8 = 40	6	0		
				SYLLA	BUS						
MODULE	I: Eı	ıvir	onment	and Ec	osyst	em					
Introduction Interdiscip Ecosystem Threats overexploin Environme Sustainab dimension	on- olinar to tation ent – le c s- N	Defi y na ictu bic n) En leve eed	nition a ature of t re and fu odiversity - Man vironmer lopment	nd sco he field. anction- (hab and ntal Eth – Soo	pe of Biodiv itat Envir ics. cial,	enviro versity loss, onment econom	onmental and its ir invasive t – H nic and	scieno nportar spe ealth enviro	ce - nce - cies, and onmental		

for Sustainable development, Sustainable Development Goals (SDGs).

MODULE II: Air and Noise pollution

Air pollutants – classification, sources and impacts - Clean air act and national ambient air quality standards (NAAQS) - Air quality index - Emission reduction strategies - Understanding and controlling indoor air pollution.

Ground level ozone and photochemical smog - Ozone layer

depletion and the Montreal Protocol, Global warming.

Noise Pollution: Sources and effects of noise; quantification of noise pollution (Leq,

LAeq, etc.); Control and regulation rules in India.

MODULE III: Water and Wastewater

Sources and availability of freshwater- Water conservation strategies - Water pollution and its impacts – Water Quality Standards (IS 10500) - Water quality index; Overview of water treatment plant-Sustainable water use and conflicts over water resources.

Wastewater sources and quality -wastewater disposal – Oxygen sag curve - Applicable wastewater discharge standards and typical flow schemes for sewage treatment plant – Decentralized wastewater treatment- natural methods of

wastewater treatment.

MODULE IV: Solid and Hazardous Waste Management

Waste Management: Consumerism and our throw-away culture; Characteristics of municipal solid waste; CPHEEO guidelines for solid waste management (overview only); Waste disposal methods (landfill, incineration, recycling).

Sustainable practices in waste management - Transition to zero waste lifestyle – Circular Economy.

Hazardous and e-waste identification and management - Recycling and waste-to-

energy technologies – regulations for hazardous waste management in India (overview only); Biomedical waste and its management.

MODULE V: Climate Action

Clim	ate Change: Evidence, causes and effects, Carbon	footprint,							
Global warming potential; Role of IPCC in the understanding of									
climate change; Global climate agreements – The United Nations									
Fran	Framework Convention on Climate Change, the Kyoto Protocol,								
and	and the Paris Agreement.								
Mitig	gation strategies – carbon capture, utilization, and	1 storage;							
adar	oting to climate change.								
Rene	ewable Energy- solar energy, Biomass, Wind energy	, New Energy							
sour	ces.								
1 G	DOOKS ilbert M Masters Wendell P Ela Introduction to								
1. U E	nvironmental Engineering and Science 3rd Edition (2013)							
D. Pe	Parson Education	2010),							
2 M	ark Brusseau Jan Penner, Charles Gerba, Environm	ental and							
2.101	allution Science 3rd Edition (2019) Elsevier	entar and							
3 M	ackenzie L Davis Introduction to Environmental En	gineering							
51	h Edition (2012)	5							
M	CGraw hill Education (India)								
Refer	ence books								
1.	Robert A Corbett, Standard Handbook of Environme	ntal							
	Engineering, 2 nd Edition (1999), McGraw Hill.								
2.	B.C. Punmia, Wastewater Engineering, 2nd edition (1)	998), Laxmi							
	Publications Pvt. Ltd.	,.							
3.	Mackenzie Davis and Susan Masten, Principles of E	nvironmental							
	Engineering &								
	Science, 4th Edition (2004), McGraw Hill.								
	COURSE CONTENTS AND LECTURE SCHEDU	ILE							
No.		No. of							
	MODILE 1 (5 hours)	Hours							
	Introduction Definition and scope of	1							
1.1	environmental science -	1							
	Interdisciplinary nature of the field.								
1.0	Ecosystem structure and function-	1							
1.4	Biodiversity and its								
	importance.								
1.3	invasive species	1							
	overexploitation)								
	Man and Environment – Health	1							
1.4	and Environment –								
	Environmental Ethics.								

	Sustainable development – Social, economic	1
1.5	and environmental dimensions	
	– Need for	
	Sustainable	
	development, Sustainable Development Goals (SDGs).	
	MODULE II (7 hours)	
2.1	Air pollutants – classification, sources and impacts -	1
2.2	Clean air act and national ambient air quality standards	1
	(NAAQS) - Air quality index.	1
2.3	and improving indoor air quality.	Ţ
2.4	Ground level ozone and photochemical smog.	1
2.5	Ozone layer depletion and the Montreal Protocol, Global warming.	1
2.6	Noise Pollution: Sources and effects of noise; quantification of noise pollution (Leg. LAeg. etc.).	1
2.7	Control and regulation rules in India.	1
	MODULE III (9 hours)	
3.1	Sources and availability of freshwater- Water conservation	1
3.2	Water pollution and its impacts – Water Quality Standards (IS 10500).	1
3.3	Water quality index; Overview of water treatment plant.	1
3.4	Sustainable water use and conflicts over water resources.	1
3.5	Wastewater sources and quality.	1
3.6	Wastewater disposal – Oxygen sag curve.	1
3.7	Applicable wastewater discharge standards and typical flow	1
	schemes for sewage treatment plant.	
-----	--	---
3.8	Decentralized wastewater treatment.	1
3.9	Natural methods of wastewater treatment.	1
	MODULE IV (7 hours)	1
4.1	Waste Management: Consumerism and our throw-away	1
4.2	Characteristics of municipal solid waste; CPHEEO guidelines	1
	for solid waste management (overview only).	
4.3	Waste disposal methods (landfill, incineration, recycling).	1
4.4	Sustainable practices in waste management - Transition to	1
	Hazardous and e-waste identification and	1
4.5	management – Recycling.	1
4.6	Waste-to-energy technologies – regulations for hazardous	1
	waste management in India (overview only).	
4.7	Biomedical waste and its management.	
	MODULE V (8 hours)	
5.1	Climate Change: Evidence, causes and effects, Carbon footprint, Global warming potential.	1
5.2	Role of IPCC in the understanding of climate change.	1
5.3	Global climate agreements – The United Nations Framework Convention on Climate Change, the Kyoto Protocol, and the Paris Agreement.	1
5.4	Mitigationstrategies– carbon capture, utilization and storage.	1
5.5	Adapting to climate change.	1
5.6	Renewable Energy- Solar energy.	1

5.7	Biomass, Wind energy.	1
5.8	New Energy sources.	1

	CO Assessment Questions
1	a) Visit any wetland ecosystem and identify the major threats faced.
	b) How can mangroves aid in coastal protection?
	a) What are the sources and effects of CO pollution?
2	b) What are the main factors in indoor air quality?
4	c) Explain the impacts of global warming.
	d) Discuss the control measures for noise pollution.
	a) List and explain any three water conservation strategies
3	b) Describe the impacts of wastewater discharge to inland water bodies.
	c) With a neat layout, explain the treatment units in a
	conventional water treatment plant.
	d) Write short note on natural methods for wastewater
	treatment.
	a) Explain the concept of circular economy. How does it
	help in achieving zero waste?
4	b) Discuss the management strategies for biomedical waste.
-	c) Classify solid waste based on source.
	d) Write a short note on Landfills.
	e) Discuss the e-waste management regulations in India.
	a) Estimate the carbon footprint of a brick kiln and
5	suggest appropriate climate action.
U	b) Suggest appropriate mitigation strategies for pollution from
	transportation sector.

24CH	T407			Piţ	oin	g a F	nd	Ins dan	stru nen	imei itals	nta	tion		L	Т	F	•	J	S	(2		Y Intr	ea oc	r of luc	tio
						-					-			2	0	0		0	2	2	2		2	1 20	1 24	
Pream	ble:																									
This co	urse air	ms	s to) ir	npa	art	the	fu	nda	men	itals	s of p	oipiı	ıg.	. It	CO	ve	ers	th	le	ba	sic	terr	niı	nolo	gies,
codes a	and sta	ano	laı	ds	, a	nd	ma	atei	rials	s us	ed :	for p	ipiı	ıg	, tł	nat	а	ny	e e	ng	gin	eer	wo	rk	ing	in a
process	s plant	n n	eed	ls	to	dea	al w	vith	. At	noth	ner a	area	of	io(cus	s is	t	οţ	ore	epa	are	e th	e st	u	len	ts to
develop	P& ID	di	agı	an	ıs.																					
Prereq	uisite:	Ν	il																							
Course	Outco	on	ies	s: A	fte	r th	le co	omp	oleti	on of	f the	e cou	rse	th	e si	tud	er	nt v	vil	l b	e a	ıble	to:			
CO1	Explai	in 1	the	m	ate	rial	s, d	lime	ensi	ons,	cod	les, a	nd	sta	and	arc	ls	us	ed	ir	ı p	ipin	g.			
CO2	Identi fittings	ify s/v	t! zalv	he ves	с /рі	om 1mp	poı ps f	nen òr a	its 1 giv	of en aj	a ppli	pipir icatio	ng n.	sy	vste	em	á	an	d	s	ele	ect	the	e	sui	table
СОЗ	Interpi diagrar	oret .ms	cc (F	mı &I	noi Dsj	n sy).	ymł	ools	and	d abl	brev	viatio	ns ı	ise	ed i	in p	pip	oin	g a	n	d ii	nstr	ume	ent	atio	n
CO4	Analyz instrui	ze ıme	P8 ent	sID s, a	s to and	o d co:	ete: ntr	rmi ol sy	ne t yste	the i ms.	inter	rconr	nect	ioı	ns	bet	W	eer	ιţ	oro	oce	SS	equi	pn	nent	· ,
C05	Descri their a	ibe app	th olio	ie c cat:	liffe ion	erer Is.	nt t	ype	s of	inst	trun	nenta	atio	11	ise	d i	n	inc	ในเ	str	rial	pr	oces	se	s ar	ıd
									C	0 - 1	PO	MAF	PII	١G	ì											

) - PU	WAPP	ING					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2						2				2	
CO2	2	2										2	
CO3	2	2								2		2	
CO4	2	2								2		2	
CO 5	2											2	
					A	eemon	t Datt	071					Ì

	ASS	essment ra	llern	
	Continuou	s Assessme	nt Tools	
Bloom's Category	Test1	Test 2	Other tools	End Semester Examination
Remember	~	~	v	
Understand	v	 ✓ 	v	
Apply	~	~	v	
Analyse			v	
Evaluate			v	
Create			v	
			· · · · · · · · · · · · · · · · · · ·	

Course	_	Th	eory [L- T]		
	Attendance	Assignment	Test-1	Test-2	Total Marks
е [L-1-F- .]]		9			
2-0-0-0	5	35	30	30	100
	1	otal Mark distr	ibution		
Total Marks	s CIA (Marl	ks) ESE (N	Iarks)	ESE	Duration
100	100				-
		SYLLABUS			
MODULE I: Inti	roduction to Pipi	ng			
Classification of	pipes, pipe mate	rials, pipe sizing, p	pipe wall thic	kness, sched	ule number,
codes, and stand	lards. Piping colou	ir codes as per type	es of fluid pa	ssing through	n pipes.
MODULE II : Pip	oing components	tion transport mina	ittings and t	hain acleation	
Gaskets: Function	ns and properties	types of gaskets	and their sele	ction Valves	
Types of valves s	election criteria of	valves for various	systems		
	ining and Instrum	nentation Diagram	ns (P&IDs)		
Purpose and in	nportance of P&	Ds in process in	dustries: In	terpretation	of symbols.
abbreviations, a	nd conventions	used in P&IDs Id	lentification	and explana	tion of process
lines, equipmen	t, and instrumer	itation symbols; I	ntroduction	to flow diag	rams and their
representation i	in P&IDs.	-		_	
MODULE IV : Pi	ping and Instrur	nentation Diagrar	n Developm	ent	
Developing P&ID	os for process syst	tems; P&ID develo	pment guide	lines and bes	t practices;
Identification a	and inclusion of	of equipment, p	piping, inst	rumentation	n, and control
components in P	&IDs Creation of	legends, tags, and	l identifiers i	n P&IDs.	
MODULE V: Ins	strumentation ar	nd Control Device	S	• • •	
Overview of inst	rumentation and	control devices us	ed in process	s industries;	principles of
and their repres	sentation in P&I	e, temperature, te	on instrum	entation and	L control device
selection and ar	onlication	Do, Case studies			
Textbooks	photon.				
1. Moe Toghraei	- Piping and Inst	rumentation Diagr	am Developm	ent-Wiley-AIC	ChE (2019)
2. Roger Hunt	and Ed Bausba	cher, "Process P	lant Lavout	and Piping	Design" PTR
Prentice-Ha	ll Inc.	,	5	1 0	0
Reference bool	ks				
1. Davidson, P. Oxford.1968	J & West, T. F." 3.	Services for the C	hemical Ind	ustry", Perga	umon Press,
2. Henry Liu, "P	ipeline Engineerir	ng", Lewis Publishe	rs.		
	COURSE CO	NTENTS AND LE	CTURE SCH	IEDULE	

No.		No. of Hours
	MODULE 1 (4 Hours)	
1.1	Introduction and Classification of Pipes	01
1.2	Pipe Materials, Sizing, and Wall Thickness	01
1.3	Codes, Standards, and Quality Assurance	01
1.4	Piping Color Codes and Fluid Identification	01
	MODULE II (6 Hours)	
2.1	Pipe Fittings - Functions, Properties, and Types	01
2.2	Pipe Fittings - Selection and Installation	01
2.3	Gaskets - Functions, Properties, and Types	01
2.4	Gaskets - Selection and Installation	01
2.5	Valves - Introduction and Types	01
2.6	Valves - Selection and Criteria	01
	MODULE III (6 Hours)	
3.1	Introduction to P&IDs and Their Importance	01
3.2	Interpretation of Symbols, Abbreviations, and Conventions	01
3.3	Identification and Explanation of Symbols for Process Lines, Equipment, and Instrumentation	01
3.4	Identification and Explanation of Symbols for Process Lines, Equipment, and Instrumentation	01
3.5	Introduction to Flow Diagrams and Their Representation in P&IDs	01
3.6	Introduction to Flow Diagrams and Their Representation in P&IDs	01
	MODULE IV (4 Hours)	
4.1	P&ID Development Guidelines and Best Practices	01
4.2	Identification and Inclusion of Equipment, Piping, Instrumentation, and Control Components	01
4.3	Identification and Inclusion of Equipment, Piping, Instrumentation, and Control Components	01
4.4	Creation of Legends, Tags, and Identifiers in P&IDs	01
	MODULE V (4 Hours)	
5.1	Overview of Instrumentation and Control Devices	01
5.2	Instrumentation Symbols and their representation in P&IDs	01
5.3	Principles of Measurement	01
5.4	Case studies on instrumentation and control device selection and application.	01

	CO Assessment - Sample Questions
	Co Assessment - Sample Questions
1	Explain the purpose and importance of codes and standards in piping design, and provide examples of widely used codes and standards in the industry.
2	Compare and contrast different types of fittings, valves, and pumps, highlighting their advantages and disadvantages in specific applications.

3	Explain the importance of consistent and standardized symbols and abbreviations in P&IDs for effective communication and understanding in the industry.
4	Please refer to the provided P&ID image below.

FOURTH SEMESTER HONOUR

24CH	H409	Comj	putatio	onal M Chen	lethod nical E	ls in Engine	ering	L	Т	Р	J	S	С	Ye Intro n	ar of ductio
								4	0	0	0	4	4	20	24
Pream equation course different from stude and t solut	nble: T tions a se buil ential c chemic ents to o sugg ions.	his co applic ds stu equati cal eng gain est th	urse ir able , t ident's ons, e gineeri knowl e	itrodu o the know mployi ng to edge i	ces dif vario ledge ing ap illustra n forn	ferent ous ch propria ate the nulatir	metho lemica en valu ate sol e techr lg the	ds t 1 e: ue p utio niqu che	o so ngi prob n r les. emi	olve nee: olem netl Th cal	the ring is, 1 nod e co eng	e pa g p line s a our gine	arti ar nd se eri	al diffe cesses algebra applic will he ng pro	rential This a, and ations lp the blems
Prere	quisite	e: Nil													
Cours	se Outo	comes	: After	the co	mpletic	on of th	e cour	se tl	ne s	tud	ent	wil	l be	e able to	C
CO1	Apply	infinit	e dime	nsiona	l space	s to an	alyze e	ngiı	neer	ing	pro	ble	ms	•	
CO2	Apply	the eig	gen val	le prol	blems i	n diffe	rent ch	emi	cal	engi	inee	erin	g p	roblem	3.
соз	Solve	the ho	mogen	ous pa	rabolic	, ellipti	ical an	d hy	per	boli	c PI	DEs			
CO4	Solve	the no	n-homo	ogenou	ls para	bolic, e	elliptica	l an	d h	ype	rbol	ic I	D	Es	
CO5	Solve	ODE/	PDE u	sing so	oftware	e packa	ages.								
					CO -	PO MA	APPINC	r							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PC)9	PO	10	PO11	PO12
CO1	3	3													
CO2	3	3		1	2										
CO3	3	3			2										
CO4	3	3		1	2										
CO5	3	3		1	2										
					Assess	ment	Patte	m							
1		~ .		Cont	inuous	s Asses	ssmen	t To	ols			En	d S	Semest	er
Blo	om's (Catego	ory	Tes	t1	Tes	t 2	Otl too	ier ols			E	kar	ninati	on
Reme	mber			~		~	•	V	/					~	
Unde	rstand			~		~	•	V	/					~	
Apply	,			~		~	•	V	/					~	
Analy	rse							V	/						
Evalu	late							V	•						
Creat	e							V	•						
				Μ	ark Di	stribu	tion of	CIA	1						

Course		Th	Total		
Structur e [L-T-P- J]	Attendance	Assignment	Test-1	Test-2	Marks

4-0-0-0 5				5 10 10				40
Total Mark distribution								
Total Ma	ırks	CIA (Mar	ks)	ESE	(Marks)		ES	SE Duration
100		40			60			3 hours
End Semeste	r Exam	ination [ESE]	: Pa	attern				
PATTERN		PART A			PART B			ESE Marks
PATTERN 1	RN 1 10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)			2 questic from each which 1 q answered can have sub divis Each qu marks. Marks: (5x Time: 3 ho	ons will h module uestion s l. Each o a maxim ions. estion ca a8 = 40 ma ours	be gi e, ou houk ques ium arrie arks)	iven it of d be tion of 2 s 8	60
	Total	Marks: 20		Total Marks	s: [5x8 = 4	0 ma	arks]	

MODULE I: Introduction to vector space (9 Hours)

Vectors, vector spaces, Metrics, Norms, Inner products, Linear dependence and dimension. Contraction mapping, Gram-Schmidt orthogonalization.

MODULE II: Application of Eigen value and vectors (9 Hours)

Matrix determinants and properties, Eigen values, Eigen vectors, Eigen value problems, Eigenvalue problems in discrete and continuous domain. Application of Eigen value problems: Stability analysis and Bifurcation theory.

MODULE III: Solution of homogenous PDEs (10 Hours)

Special ODEs, Properties of adjoint operators. Partial Differential Equation (PDE): Classification, boundary conditions and principle of linear superposition. Solution of PDE: Separation of variable method, Solution of parabolic, elliptical and

hyperbolic PDEs.

MODULE IV: Solution of non-homogeneous PDEs (10 Hours)

Solution of PDEs: Cylindrical coordinate system and Spherical coordinate system. Solution of non-homogenous elliptic and parabolic PDEs by Greens theorem.

Solution of PDEs by similarity and integral method.

MODULE V: Applications in chemical engineering (10 Hours)

Case Study 1: Use of ordinary differential equation to analyze the transient response of a unit process /operation. Solution of any two methods using software packages -Not included for test /end semester examination.

Case Study 2: One-Dimensional mass balance of a reactor/other suitable problem related to solution of partial differential equation. Solution of any two methods using software packages -Not included for test / end semester examination.

Text b 1. M H 2. A	ooks Mathematical Methods in Chemical Engineering by S. Pushpavanam, Prentice Hall of India. Applied Mathematics and Modeling for Chemical Engineers by	R. G. Rice &
I	D. D. Do, Wiley.	
3. M	Mathematical Method in Chemical Engineering by A. Varma & J Morbidelli, Dyford University Press	M.
Refere	nce books	
1.	Prof. S.De., Advanced Mathematical techniques in Chemical NPTEL course, IIT Kharagpur.	Engineering,
	COURSE CONTENTS AND LECTURE SCHEDULE	
No.		No. of Hours
	MODULE I	
1.1	Introduction to vector space metric, Norm	1
1.2	Introduction to vector space metric, Norm	1
1.3	Inner product space examples	1
1.4	Onto, into, one to one function, completeness of space	1
1.5	Linear combination of vectors, dependents/independent vectors.	1
1.6	Linear combination of vectors, dependents/independent vectors – Sample problems.	1
1.7	Orthogonal and orthonormal vectors, Gram Schmidt orthogonalization.	1
1.8	Orthogonal and orthonormal vectors, Gram Schmidt orthogonalization – Sample problems.	1
1.9	Contraction mapping: definition and examples.	1
	MODULE II	

2.1	Matrix determinants and properties	1				
2.2	Eigen values and Eigen vectors, Eigen value problem: Various theorems	1				
2.3	Eigen values and Eigen vectors, Eigen value problem: Sample problems	1				
2.4	Solution of a set of algebraic equation	1				
2.5	Solution of a set of ordinary differential equation	1				
2.6	Application of Eigen value problems: Stability analysis	1				
2.7	Application of Eigen value problems: Stability analysis	1				
2.8	Application of Eigen value problems: Bifurcation theory	1				
2.9	Application of Eigen value problems: Bifurcation theory	1				
	MODULE III					
3.1	Special ODEs, Properties of adjoint operators	1				
3.2	PDEs classification, boundary conditions and principle of superposition	1				
3.3	PDEs classification, boundary conditions and principle of superposition	1				
3.4	Solution of PDE: Separation of variable method	1				
3.5	Solution of PDE: Separation of variable method – Sample problems	1				
3.6	Solution of Parabolic homogeneous PDEs	1				
3.7	Solution of elliptical homogeneous PDEs	1				
3.8	Sample problems – Parabolic and elliptical PDE	1				
3.9	Solution of hyperbolic homogeneous PDEs	1				
3.10	Sample problem – Hyperbolic PDEs	1				
	MODULE IV					
4.1	Solution of PDEs: Cylindrical coordinate system	1				

4.2	Solution of PDEs: Spherical coordinate system	1
4.3	Sample problems for Cylindrical and Spherical system	1
4.4	Solution of non-homogenous parabolic PDEs by Greens theorem	1
4.5	Solution of non-homogenous elliptic PDEs by Greens theorem	1
4.6	Solution of non-homogenous elliptic PDEs by Greens theorem – Sample problem	1
4.7	Solution of PDEs by similarity method	1
4.8	Solution of PDEs by similarity method - Sample problem	1
4.9	Solution of PDEs by integral method	1
4.10	Solution of PDEs by integral method - Sample problem	1
	MODULE V	
5.1	Case Study 1: Use of ordinary differential equation to analyze the transient response of a unit process /operation.	1
5.2	Case Study 1: Use of ordinary differential equation to analyze the transient response of a unit process /operation.	1
5.3	Solution of any two methods using software packages	1
5.4	Solution of any two methods using software packages	1
5.5	Solution of any two methods using software packages	1
5.6	Case Study 2: One-Dimensional mass balance of a reactor/other suitable problem related to solution of partial differential equation	1
5.7	Case Study 2: One-Dimensional mass balance of a reactor/other suitable problem related to solution of partial differential equation	1
5.8	Solution of any two methods using software packages	1
5.9	Solution of any two methods using software packages	1
5.10	Solution of any two methods using software packages	1

	CO assessment sample questions
1	Calculate the matric, norm and inner products of $x = [1 2 3]$ and $y = [4 5 6]$.
2	Perform the stability analysis of a CSTR system using eigne values.
3	Solve the unsteady state heat conduction equation $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$
	Subjected to the conditions: at $t = 0, T = 0$ at $x = 0, T = 0$ at $x = 1, T = f(x) = 3x$
4	Solve the given non-homogenous PDEs using Greens function. $\frac{\partial u}{\partial t} = \frac{\partial}{\partial x^2} + f(x, t)$ Subjected to the conditions: at $t = 0, u = h$ at $x = 0, u = p$ at $x = 1, u = q$
5	Solve the equation below subject to the initial condition $(x, y, 0) = sin2\pi x sin2\pi y, 0 \le x, y \le 1$, and the conditions $u(x, y, t) = 0, t > 0$ on the boundaries. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ Obtain the solution using an appropriate software tool up to three time level with $h = \frac{1}{3}$ and $\alpha = \frac{1}{8}$

24044410		Biomass Conversion					L	T	Р	J	S	C	Year Introdu	of of	
2401	1141	.0		aı	nd Bio	refine	ery	4	1 0 0 0			4	4	2024	
Pream This co the diff	Preamble : This course will provide an insight to the energy utilization from biomass. This course is focusing on the basics of biomass, various conversion technologies, and the different types of products that can be obtained upon successful conversion.														
Prereq	uisit	e: Ni	1												
Course	e Out	com	es: Aft	er the	compl	etion c	of the	coui	se	the	e stu	ıde	ent wil	l be able t	.0
CO 1	Exp	lain t	he sce	nario	of bior	nass a	s an e	nerg	gy s	sou	rce	in	the wo	orld.	
CO 2	Des	cribe	the pr	etreat	ment a	nd cor	iversio	on p	roc	ess	ses o	of 1	biomas	s.	
CO 3	Illus	strate	the pr	ocess	es invo	olved ir	ı biofu	iel p	oroc	luc	tion	•			
CO 4	Exp	olain t	he sign	nificar	nce of h	nydrog	en ano	d re	late	ed f	fuels	3.			
CO 5	List	the p	process	es inv	volved i	in integ	grated	bio	refi	nir	ıg.				
	701	700	700	704) - PO	MAPP	'ING		0	D O	~	7010	DO11	7010
CO	POI	P02	PO3	P04	P05	P06	PO7		PO	8	PO	9	POIC	POII	P012
CO 1	3						2								2
CO 2	3						2								
CO 3	3						2								2
CO 4	3						2								2
CO 5	3						2								2
					Asse	essme	nt Pa	tte	rn						
					Contir	nuous	Asse	ssm	len	t					
Bloom	's Cai	tern	-17			То	ols				Er	hr	Seme	ster	
Dioom's cutogory			Test1	Te	st 2	Ot to	he: ols	r	Ех	ai	ninati	on			
Remember				v		✓	L	/		 ✓ 					
Understand				v		~	L	/					v		
Apply				v		✓	L	/					v		
Analyse							L	/							
Evalua	te							L	/						
Create								L	/						
					Mark	Distri	butio	n of	CL	A					

Course		Th	Total			
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Marks	
4-0-0-0	5	15	10	10	40	
Total Mark distribution						

Total Ma	ırks	CIA (Marks)	ESE (Marks)	E	SE Duration
100		40	60		3 Hrs
End Seme	ester Ez	amination [ESE	<u>]: Pattern</u>		
PATTERN		PART A	PART B		ESE Marks
PATTERN 1	10 Qu questi marks Marks marks	estions, each on carries 2 s : (2x10 =20 s)	2 questions will be given each module, out of wh question should be answ Each question can ha maximum of 2 subdivis Each question carri- marks. Marks: (5x8 = 40 marks) Time: 3 hours	i from hich 1 vered. ave a ions. es 8	60
	Total	Marks: 20	Total Marks: [5x8 = 40 ma	arks]	

MODULE I: Introduction

Biomass: Availability and abundance, photosynthesis, composition and energy potential, virgin biomass production and selection, waste biomass (municipal, industrial, agricultural and forestry) availability, abundance and potential biomass as energy resources: dedicated energy crops, annual crops (maize, sorghum sugar beet, hemp), perennial herbaceous crops (sugarcane, switchgrass, miscanthus), short rotation woody crops (poplar, willow), oil crops and their biorefinery potential, microalgae as feedstock for biofuels and biochemical, enhancing biomass properties for biofuels, challenges in conversion.

Biorefinery: Basic concept, types of biorefineries, biorefinery feedstocks and properties, economics

MODULE II: Biomass Pretreatment and Conversion Processes

Biomass Pretreatment: Barriers in lignocellulosic biomass conversion, pretreatment technologies such as acid, alkali, autohydrolysis, hybrid methods, role of pretreatment in the biorefinery concept

Physical and Thermal Conversion Processes: Types, fundamentals, equipments and applications; thermal conversion products, commercial success stories

Microbial Conversion Process: Types, fundamentals, equipments and applications, products, commercial success stories

MODULE III: Biofuels

Biodiesel: Diesel from vegetable oils, microalgae and syngas; transesterification; FT

process, catalysts; biodiesel purification, fuel properties.

Bio-oil and Biochar: Factors affecting bio-oil, biochar production, fuel properties, bio-oil upgradation

Bioethanol and Biobutanol: Corn ethanol, lignocellulosic ethanol, microorganisms for fermentation, current industrial ethanol production technology

MODULE IV: Modern Bio Energy Sources

Hydrogen, Methane and Methanol: Biohydrogen generation, metabolic basics, feedstocks, dark fermentation by strict anaerobes, facultative anaerobes, thermophilic microorganisms, integration of biohydrogen with fuel cell; fundamentals of biogas technology, fermenter designs, biogas purification, methanol production and utilization

Organic Commodity Chemicals from Biomass: Biomass as feedstock for synthetic organic chemicals, lactic acid, polylactic acid, succinic acid, propionic acid, acetic

acid, butyric acid, 1,3-propanediol, 2,3-butanedioil, PHA

MODULE V: Integrated Biorefinery

Integrated Biorefinery: Concept, corn/soybean/sugarcane biorefinery, lignocellulosic biorefinery, aquaculture and algal biorefinery, waste biorefinery, hybrid chemical and biological conversion processes, techno- economic evaluation, life-cycle assessment

Text books

- 1. A.A. Vertes, N. Qureshi, H.P. Blaschek, H. Yukawa (Eds.), Biomass to Biofuels: Strategies for Global Industries, Wiley, 2010.
- S. Yang, H.A. El-Enshasy, N. Thongchul (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers, Wiley, 2013.

Reference Books

- 1. Donald L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, Elsevier, 2006.
- 2. Prabir Basu, Biomass Gasification, Pyrolysis and Torrefaction, Academic Press, Elsevier, 2013.
- 3. Shang-Tian Yang (Ed.), Bioprocessing for Value Added Products from Renewable Resources, Elsevier, 2007.

	COURSE CONTENTS AND LECTURE SCHEDULE				
No.		No. of Hours			
	MODULE 1 (10 hours)				
1.1	Introduction and scope.	1			
1.2	World energy scenario, consumption pattern, fossil fuel depletion and environmental issues	1			
1.3	Biomass production and selection	1			
1.4	Biomass production and selection	1			

1.5	Biomass as energy resources: dedicated energy crops- annual crops, perennial herbaceous crops	1			
1.6	Short rotation woody crops, oil crops and their biorefinery potential, microalgae as feedstock for biofuels and biochemical	1			
1.7	Enhancing biomass properties for biofuels, challenges in conversion	1			
1.8	Introduction to Biorefinery	1			
1.9	Biorefinery feedstocks and properties, economics	1			
1.10	Biorefinery feedstocks and properties, economics	1			
	MODULE II (10 hours)				
2.1	Biomass Pretreatment	1			
2.2	Physical and Thermal Conversion Processes -Types and fundamentals, equipments and applications	1			
2.3	Physical and Thermal Conversion Processes -Types and 1 fundamentals, equipments and applications				
2.4	Physical and Thermal Conversion Processes -Types and 1 fundamentals, equipments and applications				
2.5	Thermal conversion products, commercial success stories1				
2.6	Thermal conversion products, commercial success stories				
2.7	Microbial Conversion Process Types, fundamentals,	1			
2.8	Microbial Conversion Process Types, fundamentals, 1				
2.9	Equipments used and applications; commercial success stories	1			
2.10	Equipments used and applications; commercial success stories	1			
	MODULE III (9 hours)				
3.1	Biodiesel Diesel from vegetable oils, microalgae and syngas	1			
3.2	Transesterification; FT process, catalysts; biodiesel purification, fuel properties	1			
3.3	Bio-oil and Biochar: Factors affecting bio-oil, biochar production	2			
3.4	Bio-oil and Biochar: Factors affecting bio-oil, biochar production				
3.5	Fuel properties, bio-oil upgradation	1			
3.6	Bioethanol and Biobutanol -Corn ethanol, lignocellulosic ethanol,	1			

3.7	Bioethanol and Biobutanol -Corn ethanol, lignocellulosic ethanol,	1
3.8	Microorganisms for fermentation, current industrial ethanol production technology	1
3.9	Microorganisms for fermentation, current industrial ethanol production technology	1
	MODULE IV (8 hours)	
4.1	Hydrogen and Biohydrogen generation	1
4.2	Hydrogen and Biohydrogen generation	1
4.3	integration of biohydrogen with fuel cell	1
4.4	integration of biohydrogen with fuel cell	1
4.5	Methane, Biogas and Methanol	1
4.6	Methane, Biogas and Methanol	1
4.7	Organic Commodity Chemicals from Biomass	1
4.8	Organic Commodity Chemicals from Biomass	1
	MODULE V (8 hours)	
5.1	Integrated Biorefinery: Concept, corn/soybean/sugarcane biorefinery	1
5.2	Integrated Biorefinery: Concept, corn/soybean/sugarcane biorefinery	1
5.3	Lignocellulosic biorefinery, aquaculture, and algal biorefinery, waste biorefinery	1
5.4	Hybrid chemical and biological conversion processes	1
5.5	Techno-economic evaluation	1
5.6	Life-cycle assessment	
5.7	Life-cycle assessment	1
5.8	Life-cycle assessment	

	CO Assessment Sample Questions				
1	Explain the energy consumption pattern in India				
2	Describe the role of pretreatment in the biorefinery				
3	List the factors affecting the bio-oil production				
4	Explain the different methods involved in biogas purification				

5	Desc	cribe th	ne proc	esses	in lign	ocellul	osic b	iore	efir	nery		_			
24CHH411 Modern Methods of Instrumentation					f	L T P J S C Year Introduc									
			1	115ti u	ment	ation		4	0	0 0 4 4 2024					24
Pream	ble: Th	is cour	rse intr	oduce	es stud	lents t	o son	ne i	mo	deri	ı i	dea	s a	nd tools	used for
measu	iring va	riables	in a p	proces	s indu	stry w	which a	are	es	ssen	tia	l fo	r p	roper cor	ntrol and
functi	ctioning of all equipment's and processes. The course covers temperature														
measu	irement	s, pre	ssure	measu	iremen	nts, flo	ow me	eas	ur	eme	nts	s, (com	position	analysis
using	spectro	scopic	metho	ds an	d adva	anced	senso	rs	an	d m	lea	sur	em	ent techr	iiques ir
Cnem	icai En	gineer: Nil	ing.												
Cours	e Outco	mes [.]	After th	e com	nletion	of the	cours	e tł	he	stuc	len	t w	ill h	e able to	
CO 1	Ext	lain	the h	asic	nrinci	nles (of m	eas	2111	em	ent	t in	netr	umenta	tion and
~~ I	cha	racteriz	re instr	iment	s hase	d on ti	heir ne	orfo	rm	ance	`م د	h ar	acte	ristice	and and
<u> </u>	E114		d alrot	ament	iona m		na ina	.110	1111	onto	110	ad	for	tomnonet	1170
CU 2	Ext	nam ar	ia skeu	cn var:	ious in		11g 111s	stru		ents	us	ea	101	temperat	ure
~~~~	mea	isureme	ent and	their	sale aj	pplicati	on.								
CO 3	Cha	iracteri	ize and	sketc	h vario	ous me	easuri	ng	ins	stru	me	nts	us	ed for lev	el and
	pre	ssure i	n proce	ss ind	ustries	3.									
CO 4	Exp	olain r	neasur	remen	it inst	rumer	ntation	n fo	or	flov	v r	nea	asu	ring in v	various
	app	olicatio	ons.												
CO 5	Fan	niliarizo	e mode	ern m	ethod	of ins	trume	nta	atic	on fe	or	con	npo	sition an	alysis,
	hur	nidity a	and mo	isture	conte	nt mea	asuren	nen	nt a	nd	adv	van	ced	Sensors	and
	mea	asurem	ent tec	hniqu	les in C	Chemic	al Eng	gine	eer	ing					
					CO -	PO M	APPIN	IG							
СО	<b>PO1</b>	PO2	PO3	P04	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	P 8	0	PO 9	]	PO	10	PO11	PO12
CO 1	3	2	3												1
CO 2	3		1												1
$\alpha \alpha \alpha$	3		1												1
CO3	<b>^</b>		1												1
CO 3 CO 4	3		-						_	_	-				

Assessment Pa	attern
---------------	--------

Pleam's Catagory	Continu	ous Asse: Tools	ssment	End Somester
Bloom's Category	Test1	Test 2	Other tools	Examination
Remember	<ul> <li>✓</li> </ul>	<ul> <li>✓</li> </ul>	<b>v</b>	<b>v</b>
Understand	<b>v</b>	<ul> <li>✓</li> </ul>	<b>v</b>	<ul> <li></li> </ul>
Apply	<b>v</b>	<ul> <li>✓</li> </ul>	<b>v</b>	<i>v</i>
Analyse			<b>v</b>	
Evaluate			<b>v</b>	
Create			<b>v</b>	

		Ma	ark I	Distributio	n of CIA			
Course	A	Attendance		Tl	neory [L- T]			
Structure [L-T-P-J]	9	As:		signment	Test-1	Test-2	Total Mark	l :s
4-0-0-0		5		15	10	10	4	0
		Тс	otal	Mark distı	ribution			
<b>M</b> - 4 - 1 <b>BF</b> -			.1	DOE	( <b>) / ) / )</b>			
	ILLE		rksj	ESE	(Marks)	Ľ		lon
100     40     60       End Semaster Examination [ESE]: Dettorn						3 111		
PATTERN		PART A			PART B		ESE Ma	rks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)			2 question each mod question s Each que maximum Each quest Marks: (5x8 Time: 3 hou	s will be gi ule, out of hould be a estion can of 2 sub div ion carries 3 = 40 mark rs	ven from f which 1 answered. have a visions. 8 marks. s)	60	
	Total M	Iarks: 20		Total Marks	: [5x8 = 40 r	narksl		

**MODULE I**: Introduction – Temperature measurements

Introduction-definition of instrumentation-concept of an instrument, basic principles of measurements -Temperature measurements, temperature scales, mercury in glass thermometers, bimetallic thermometers, resistance thermometers, thermocouples, thermistors, Resistance Thermal Detectors (RTD), optical pyrometers, radiation pyrometers, ranges of different types of temperature measuring instruments, sources of errors and precautions to be taken in temperature measurements.

**MODULE II**: Pressure measurements

Industrial pressure measurement by Bourdon gauge, bellows, diaphragm, electrical pressure transducers, strain gauges and piezoelectric manometers, Pressure measurement of corrosive liquids, Level measurement-direct type and indirect type. Differential pressure method for pressurized vessels, Conductivity meters, Solid level detectors.

**MODULE III**: Flow measurements

Flow measurements: magnetic flow meters, turbine meters, Ultrasonic Flow Meters, Vortex Flow Meters, measuring flow of dry materials by mass flow meters, Thermal Mass Flow Meters, heat input flow meter, venturimeters, moisture content determination by thermal drying. Instruments for measuring humidity like hygrometer, psychrometer, dew point apparatus.

**MODULE IV**: Composition Analysis using spectroscopic methods

Introduction to spectroscopic techniques- Electrothermal AAS, Hydride generation AAS and Flameless mercury analysis, Inductively Coupled Plasma Atomic Emission Analysis, Infrared spectrometry, Introduction to X-Ray techniques, XRD, XRF Introduction to NMR spectroscopy and mass spectrometry, Chromatographic analysis: GC, LC, HPLC, Hyphenated techniques.

**MODULE V**: Advanced Sensors and Measurement Techniques in Chemical Engineering

Electrochemical Sensors - Types of Electrochemical Sensors: Potentiometric, Amperometric, and Conductometric Sensors and their applications - Nanosensors and their Applications in Chemical Engineering. Smart Sensors and Internet of Things (IoT) in Chemical Engineering, Process Analytical Technology (PAT) in Chemical Engineering

- Overview of Process Analytical Technology (PAT)

### Text books

No.

- 1. Jain R K, Mechanical and Industrial measurements, Khanna publishers
- 2. Patranabis D, Principles of Industrial Instrumentation, Tata- McGraw Hill.

### **Reference books**

- 1. Ernest O Doeblin, Measurement systems, Application and Design, McGraw Hill
- 2. Donald P Eckman, Industrial Instrumentation, CBS Publishers and Distributors, NewDelhi
- 3. H.Willard , L.L Meritt, J.A Dean and F.A.Settle : Instrumental Methods of Analysis, 6th Edition, CBS. 2. 4. A.I.Vogel: Quantitative Inorganic Analysis, 5th Edition, ELBS. 4. G.W. Ewing: Analytical Instrumentation Hand book, Marcell Dekker, New York, 1990.

<b>COURSE CONTENTS AN</b>	<b>D LECTURE SCHEDULE</b>
---------------------------	---------------------------

No. of Hours

MODULE 1 (9 hours)							
1.1	Introduction-definition of instrumentation-concept of an instrument	1					
1.2	Basic principles of measurements	1					
1.3	Temperature measurements, temperature scales	1					
1.4	Basic principles and working of thermometers, mercury in glass	1					
1.5	Bimetallic thermometers	1					
1.6	Thermocouples and thermoelectricity	1					
1.7	Thermistors, resistance thermal detectors (RTD), optical pyrometers, radiation pyrometers.	1					

1.8	Ranges of different types of temperature measuring instruments, sources of errors and precautions to be taken in temperature measurements	1				
1.9	Ranges of different types of temperature measuring instruments, sources of errors and precautions to be taken in temperature measurements	1				
	MODULE 2 ( 9 hours)					
2.1	Industrial pressure measurement by Bourdon gauge, bellows diaphragm	1				
2.2	Industrial pressure measurement by Bourdon gauge, bellows diaphragm	1				
2.3	Pressure measurement by electrical pressure transducers	1				
2.4	Strain gauges and piezoelectric manometers	1				
2.5	Strain gauges and piezoelectric manometers					
2.6	Pressure measurement of corrosive liquids					
2.7	Level measurement-direct type and indirect type	1				
2.8	Differential pressure method for pressurized vessels	1				
2.9	Conductivity meters. Solid level detectors	1				
	MODULE III (9 hours)					
3.1	Flow measurements: magnetic flow meters, turbine meters	1				
3.2	Flow measurements: magnetic flow meters, turbine meters	1				
3.3	Ultrasonic Flow Meters, Vortex Flow Meters	1				
3.4	Measuring flow of dry materials by mass flow meters	1				
3.5	Thermal Mass Flow Meters,heat input flow meter, venturimeters	1				
3.6	Thermal Mass Flow Meters, heat input flow meter, venturimeters	1				
3.7	Moisture content determination by thermal drying	1				

3.8	Instruments for measuring humidity like hygrometer, psychrometer, dew point apparatus	1
3.9	Instruments for measuring humidity like hygrometer, psychrometer, dew point apparatus	1
	MODULE IV (9 hours)	
4.1	Introduction to spectroscopic techniques	1
4.2	Electrothermal AAS	1
4.3	Hydride generation AAS	1
4.4	Flameless mercury analysis	1
4.5	Inductively Coupled Plasma Atomic Emission Analysis.	1
4.6	Infrared spectrometry. Introduction to X-Ray techniques, XRD, XRF	1
4.7	Introduction to NMR spectroscopy and mass spectrometry.	1
4.8	Chromatographic analysis: GC, LC	1
4.9	HPLC, Hyphenated techniques.	1
	MODULE V (9 hours)	
5.1	Electrochemical Sensors - Types of Electrochemical Sensors:	-
	rotentioniettic sensors	1
5.2	Amperometric, and Conductometric Sensors and their applications	1
5.2 5.3	Amperometric, and applicationsConductometric Sensors and their applicationsAmperometric, and applicationsConductometric Sensors and their 	1 1 1 1
5.2 5.3 5.4	Amperometric, and Conductometric Sensors and their applications Amperometric, and Conductometric Sensors and their applications Nanosensors and their Applications in Chemical Engineering.	1 1 1 1
5.2 5.3 5.4 5.5	Amperometric, and Conductometric Sensors and their applications Amperometric, and Conductometric Sensors and their applications Nanosensors and their Applications in Chemical Engineering. Nanosensors and their Applications in Chemical Engineering	1 1 1 1 1 1
5.2 5.3 5.4 5.5 5.6	Amperometric, and Conductometric Sensors and their applications Amperometric, and Conductometric Sensors and their applications Nanosensors and their Applications in Chemical Engineering. Nanosensors and their Applications in Chemical Engineering Smart Sensors and Internet of Things (IoT) in Chemical Engineering	1 1 1 1 1 1 1
5.2 5.3 5.4 5.5 5.6 5.7	Amperometric, and Conductometric Sensors and their applications Amperometric, and Conductometric Sensors and their applications Nanosensors and their Applications in Chemical Engineering. Nanosensors and their Applications in Chemical Engineering Smart Sensors and Internet of Things (IoT) in Chemical Engineering Smart Sensors and Internet of Things (IoT) in Chemical Engineering	1 1 1 1 1 1 1 1
<ul> <li>5.2</li> <li>5.3</li> <li>5.4</li> <li>5.5</li> <li>5.6</li> <li>5.7</li> <li>5.8</li> </ul>	Amperometric, and Conductometric Sensors and their applications Amperometric, and Conductometric Sensors and their applications Nanosensors and their Applications in Chemical Engineering. Nanosensors and their Applications in Chemical Engineering Smart Sensors and Internet of Things (IoT) in Chemical Engineering Smart Sensors and Internet of Things (IoT) in Chemical Engineering Process Analytical Technology (PAT) in Chemical Engineering	1 1 1 1 1 1 1 1 1 1

	CO Assessment Sample Questions
	In the context of measurement instruments, define sensitivity and explain its
CO1	significance in different applications. Explain, how to optimize the sensitivity of
	an instrument without sacrificing other performance characteristics.
	In an industrial setting, outline three essential safety measures that should
CO2	be followed when using temperature measuring instruments. Explain how
	these measures can help prevent accidents and ensure safe operations
	during temperature measurements.
002	Suggest a method for the measurement of pressure above 10,000kg/cm ² .
COS	Write its working principle.
	Compare and contrast magnetic flow meters and ultrasonic flow meters for
CO4	measuring fluid flow. Explain their working principles and list out the
	advantages and limitations of each type of flow meter.
CO5	Provide an example of a hyphenated technique and explain how it enhances
005	the analytical capabilities of chromatographic analysis.

# FOURTH SEMESTER MINOR

24CHM400 MECHAN				NICAL UNIT OPERATIONS				L	Т	Р	J	S	С	Yea Introd	r of uction
2-011	M-102						110110	4	0	0	0	0	4	202	24
Pream	<b>Preamble</b> : This course gives an introduction to the fundamental particle														
proces	processing concepts. Separation of solids and size reduction operation														
techni	techniques are discussed. Industrially important methods for storage and														
transportation of particles are familiarized.															
Prerequisite: INII															
<b>Course Outcomes</b> : After the completion of the course the student will be able to															
CO1	Analyze particle size distribution of a given sample and present the result in a useful form														
CO2	Infer t	he fur	ndam	ental	partic	le pro	cessin	g c	onc	ep	ts	and	1 ı	unit	
	opera	tions i	n the	indu	striall	y imp	ortant	fie	ld c	of r	nir	iera	al		
	benefi	ciatio	n.												
CO3	Exam	ine th	e fun	dame	entalco	oncep	ts of v	var	iou	s n	net	ho	ds	s for	
	handl	ing m	ateria	ls in j	proces	ss ind	ustrie	s li	ke s	scr	eeı	nin	g,		
	class1	ficatio	n, sec	limen	itation	ι,									
CO4	Select	ion, e	ic. ble e	auinn	nent f	or ha	ndling	m	ater	<u></u> 1	e i	n r	۱r	00000	
COT	indus	tries li	ike sc	reeni	ng, cla	assific	cation,	se	dim	ien	itat	tior	1,	filtratio	on etc.
CO5	Select	a su	itable	e metl	hod fo	or sto	rage a	nd	tra	ans	spc	orta	ιti	on of t	ulk
	solids	in pr	ocess	s indu	istries	8.	-				-				
					CO - F	PO MA	PPING								
CO	<b>PO1</b>	<b>PO2</b>	<b>PO</b> 3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	PC	)8	PC	)9	PO	1	PO11	PO12
001	0	0						_				0			
CO1	3	2											_		
C02	2							-			_		_		1 1
CO3	- い - つ - つ	2						-		-	_		-		1 1
CO7	3	2						+			-		-		1
	0	4		A	ssessn	nent H	Patterr	1							-
			(	Contir	iuous	Asses	sment	То	ols			_		1.0	
Bloo	m's Ca	tegor	У	Te	st1	Тея	st 2	Othe			End Semest Examinatio		ster ion		
Remen	ıber			~		V	•	6	/					<b>v</b>	
Under	stand			~		V	•	6	/					~	
Apply				~		V	•	6	/					<b>v</b>	
Analys	e							6	/						
Evalua	ite							6	/						
Create								•	/						

Mark Distribution of CIA									
Course		Total							
Structure [L-T-P-J]	Attendance	As	signment	Test-1	Test-2	Mark s			
4-0-0-0	5		15	10	10	40			
	Тс	otal M	lark distrib	ution					
Total Mark	s CIA (Ma	rks)	ESE (	Marks)	ESE	Duration			
100	40	· · ·	6	50	3	Hours			
	End Semes	ster E	xamination	[ESE]: Patt	ern				
PATTERN	PART A				ESE Marks				
PATTERN 1	10 Question each questio carries 2 ma Marks: (2x10 =20 marks)	s, on rks )	2 question from each mod question s answered have a ma divisions. Each que marks. Marks: (5 Time: 3 h	ns will be g ule, out of should be . Each que aximum of stion carrie x8 = 40 ma ours	given which 1 estion can 2 sub es 8 es 8	60			
	Total Marks: 20Total Marks: [5x8 = 40 marks]								

**MODULE I** : Characterization of particles and screening

Particle diameter and shape factor - particle size analysis - sieve analysis - particle size distribution - cumulative and differential methods of analysis - mean diameters – specific surface area and number of particles – screening-effectiveness and

capacity of screens and factors affecting them - types of industrial screens. **MODULE II** : Size separation and mineral beneficiation techniques

Principles of free and hindered settling - equal settling particles - types of classifiers

(limited to construction and working) - gravity settling tank, double cone

classifier, rake classifier, principles of mineral beneficiation methods jigging - froth flotation.

### **MODULE III** : Comminution

Laws of comminution - mechanism and efficiency of size reduction principles of important size reduction equipments (limited to equipments listed) – Jaw Crusher, Gyratory Crusher, Hammer mills, Ball mills, Fluidenergy mills, closed circuit and

open circuit grinding – free crushing and choke feeding.

### **MODULE IV** : Filtration

Filtration - theory of constant pressure and constant rate filtration - cake porosity

and compressibility - filter aids - types of batch and continuous filters (plate and

frame, rotary, leaf filters-construction and working).

**MODULE V** : Air separation methods, Storage and transport of solids

Air separation methods - cyclone separation – electrostatic precipitation – Bag filters- venturi scrubber - storage and conveying of solids (numerical problems are not required) - silos, bins and hoppers -different types of conveyors (Belt, chain, screw,

pneumatic) - selection of conveyors.

### Text books

- 1. McCabe W.L., Smith J.C. and Harriot P., Unit Operations of Chemical Engineering, McGraw Hill, New York 2001. 6th Edition
- 2. Anup K Swain, Hemlata Patra, G.K.Roy, Mechanical Operations, Mc-Graw- Hill 2nd Education

### **Reference books**

- 1. Coulson J. M. and Richardson J.F; Chemical Engineering Vol. 1& 2 Publishers: Butterworth – Heinemann Ltd. 2001-2002.
- 2. Christie J. GeanKoplis, Transport processes & Unit Operation Prentice hall International
- 3. Badger & Banchero, Introduction to Chemical Engineering, Mc-Graw- Hill Education
- 4. C.M.Narayan,B.C.Bhattacharyya,Mechanical Operations for Chemical Engineers, Khanna publishers.

### COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours						
	MODULE 1 (9 hours)							
1.1	Particle diameter and shape factor	1						

1.2	Particle size analysis - sieve analysis - particle size distribution - cumulative and differential methods of analysis	1					
1.3	Particle size analysis - sieve analysis - particle size distribution - cumulative and differential methods of analysis	1					
1.4	Particle size analysis - sieve analysis - particle size distribution - cumulative and differential methods of analysis	1					
1.5	Mean diameters – specific surface area and number of particles	1					
1.6	Screening-effectiveness and capacity of screens and factors affecting them -	1					
1.7	Screening-effectiveness and capacity of screens and factors affecting them -	1					
1.8	Types of industrial screens.	1					
1.9	Types of industrial screens.	1					
	MODULE II (10 hours)						
2.1	Principles of free and hindered settling - equal settling particles	1					
2.2	Principles of free and hindered settling - equal settling particles	1					
2.3	Principles of free and hindered settling - equal settling particles	1					
2.4	Types of classifiers (limited to construction and working) – gravity settling tank, double cone classifier, rake classifier	1					
2.5	.5 Types of classifiers (limited to construction and working) – gravity settling tank, double cone classifier, rake classifier						
2.6	Principles of mineral beneficiation methods - jigging	1					
2.7	Principles of mineral beneficiation methods - jigging	1					
2.8	Froth flotation	1					
2.9	Froth flotation	1					
2.10	1						
MODULE III (9 hours)							

3.1	Laws of comminution - mechanism and efficiency of size reduction	1						
3.2	Laws of comminution - mechanism and efficiency of size reduction	1						
3.3	Laws of comminution - mechanism and efficiency of size reduction	1						
3.4	Principles of important size reduction equipments (limited to equipments listed) – Jaw Crusher, Fluid- energy mills.	1						
3.5	Principles of important size reduction equipments (limited to equipments listed) – Jaw Crusher, Fluid- energy mills.	1						
3.6	Gyratory Crusher	1						
3.7	Hammer mills	1						
3.8	Ball mills	1						
3.9	closed circuit and open circuit grinding – free crushing and choke feeding.	1						
	MODULE IV (10 hours)							
4.1	Filtration - theory of constant pressure and constant rate filtration -	1						
4.2	Filtration - theory of constant pressure and constant rate filtration	1						
4.3	Filtration - theory of constant pressure and constant rate filtration	1						
4.4	Cake porosity and compressibility	1						
4.5	Types of batch and continuous filters -plate and frame	1						
4.6	Types of batch and continuous filters -plate and frame	1						
4.7	Rotary filter	1						
4.8	Leaf filters	1						
4.9	Numerical problems to find washing time	1						
4.10	Numerical problems to find washing time	1						
MODULE V (10 hours)								
5.1	Air separation methods - cyclone separation	1						
5.2	Electrostatic precipitation	1						
5.3	Bag filters-	1						
5.4	Venturi scrubber	1						
5.5	Storage and conveying of solids (numerical problems are not required) - silos, bins and hoppers	1						

5.6	Storage and conveying of solids (numerical problems are not required) - silos, bins and hoppers	1
5.7	Different types of conveyors (Belt, chain, screw, pneumatic)	1
5.8	Different types of conveyors (Belt, chain, screw, pneumatic)	1
5.9	Selection of conveyors.	1
5.10	Selection of conveyors.	1

### CO Assessment Sample Questions

1	Explain capacity and effectiveness of a screen. Derive an expression to find screen effectiveness.
2	You are a process engineer responsible for separating particles from liquids. Select an equipment that can be used for separating equally falling particles. Describe the principle and working of the equipment with a diagram.
3	Describe the construction and working of a ball mill with a diagram.
4	Describe the construction and working of a rotary drum filter.
5	Describe the working of different types of conveyors use conveyors used in cement industries.

## FIFTH SEMESTER

								L	Т	P	J	S	С	Yea	ar of
24CH	<b>[T501</b>	N	Aass T	ransfe	er Ope	rations	s - I							Intro	ductio
									1	0	0	2	3	20	n 124
Pream	ıhle [.]	This	C0111		rives	the	fund	ame	•nt₂	als		<b>4</b>	me	<b>20</b> 195 t	ransfer
operat	ions i	in	coul		51700	the	Tunu	ann	/1100		01	-	me	100 1	ranoici
industrial processes. The content includes the fundamentals on molecular															
diffusion, Gas-Liquid contacting equipment for separation process and															
estimation of number of stages in distillation column using suitable															
numerical solutions applied in the design of industrial separation process.															
Prerequisite: Nil															
Cours	e Out	comes	s: After	• the c	omple	tion of	the c	ours	se tl	he s	tuc	len	t w	ill be a	able to
CO1	Dete	ermine	e mas	s flux	and	estima	ate di	ffus	ion	CO	effi	cie	nts	s in in	terface
	mas tran	s sfer													
CO2	Sele	ct suit	able C	as-Li	quid c	ontact	ing eq	uip	mei	nt fo	or n	nas	ss t	ransfe	r
	oper	ations	s and i	denti	fy its o	operat	ional	diffi	icu	lties	5.				
CO3	Dete	ermine	e opera	ating	param	neters	for ga	s-lio	qui	d at	080	rpt	ion	in tra	iy and
	pack	red mns													
CO4	Esti	mate	the c	compo	sition	of d	istilla	te a	nd	res	sidı	ıe	fro	m var	ious
	bina	ry sep	paratio	on me	thods	•									
CO5	Dete	ermine	e the	num	per of	stage	es in	а	fra	ctio	nat	toi	n co	olumn	using
	McC	abe-11	niele n	iethod	l.		DDINC	۱							
CO	DO1	DOO	DO2	DO4		PO MA		T D	00	DC	<b>\O</b>	DO	10	DO11	<b>DO12</b>
CO1	2	<b>FU4</b>	<b>FU3</b>	ru <del>4</del>	F05	FUO	FO1	Г	00	FU	. כו	FU	10	FOII	<b>PU12</b>
CO1	3 3	3 2	2							-	_				2
CO3	3	3	2												2
CO4	3	3	2												2
CO5	3	3	2												2
	0	U	-		Assess	ment	Patte	rn							
				Cont	inuous	s Asses	ssmen	t To	ools			D	. 1 0		
Blo	om's C	Catego	ory –	Tes	t1	Test 2		Oth	Othe		End Semester			er	
								r			Examination			011	
								too	ols						
Remember				~		<b>v</b>		V	•		✓				
Understand				~		✓		V	·		✓				
Apply				~		~	,	V	•					~	
Analys	se							V	•						
Evaluate								V	•						
Create								V	•						
	Mark Distribution of CIA														

Course	Attendance	The	Theory [L- T]						
Structure [L-T-P-J]	Attenuance	Assignment	Test-1	Test-2	Marks				
2-1-0-0	5	15	15 10 10						
Total Mark distribution									
		sj ese (	Marksj	E9.					
100	40		DU FEFIL Dotto		3 HOUIS				
	End Semester	Examination_	ESEJ: Patte	<u>rn</u>					
PATTERN	PART A		PART B		ESE Marks				
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks	2 questio from each modu question answered. can have sub divisio Each que marks. M marks) Time: 3 ho	PART BESE Mar2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.60Each question carries 8 marks. Marks: (5x8 = 40 marks)60						
	0								
marksj									
SYLLABUS									
MODULE I: Mole	cular Diffusion ar	nd Fundamenta	ls						
Molecular diffu	sion - mass fli	ives <i>L</i> and <i>L</i>	V Fick's	law - d	iffusivity and				

Molecular diffusion - mass fluxes  $J_A$  and  $N_A$  - Fick's law - diffusivity and estimation

-steady state diffusion of A through stagnant B and equimolar counter diffusion in binary gases, liquids and multi component gas mixtures. Mass transfer coefficients, dimensionless groups - analogy between mass, heat and momentum transfer. Basic concepts and assumptions involved in theories of mass transfer: penetration and surface renewal theoriesinterphase mass transfer - equilibrium - diffusion between

phases - two-film theory - local and overall k-type coefficients.

MODULE II: Gas-Liquid contacting equipments

Gas-Liquid contacting equipments for mass transfer operations - single stage and

multistage contact, tray towers, tray types and general features of tray designs (qualitative treatment), continuous contact equipment, wetted wall columns, venturi scrubbers, packed columns, packing materials and characteristics, general constructional details of packed columns, Factors affecting column performance-flooding, priming, coning, weeping, loading etc., comparison between plate and packed columns.

**MODULE III**: Gas-Liquid Absorption

Gas absorption - Solubility of gases in liquid, choice of solvent, Material balance in

counter current and co-current absorption and stripping, L/G ratio,

Minimum gas liquid ratio, Multistage operation, number of plates by graphical construction,

Kremser equation, tray efficiency, design of packed columns, transfer unit and

general graphical method, dilute solutions and simplified design methods. **MODULE IV**: Distillation Fundamentals

Distillation- Vapour-Liquid Equilibria, boiling- point diagram and equilibrium curves,

relative volatility, application of Raoult's law. Distillation methods- flash distillation, Simple distillation or Differential distillation, Binary distillation, Steam distillation, Problems.

**MODULE V**: Design of Distillation Column

Fractionation of binary mixtures, Principle of fractionation, Fractionation in plate columns, condensers and reboilers. Material and energy balance, Design of fractionation columns by McCabe - Thiele method - basic assumptions, feed quality and feed line, number of plates, feed plate location, total reflux, minimum reflux,

optimum reflux, plate efficiency, cold reflux and open steam.

### Text books

- 1. Treybal R.E., Mass Transfer Operations, McGraw Hill.
- 2. Binay K Dutta, Principles of Mass Transfer & Separation Processes, PHI Learning Private Limited.
#### **Reference books**

- 1. K.V. Narayanan and B. Lakshmikutty. Mass Transfer-Theory and Applications, CBS Publishers.
- 2. N. Anantharaman and K.M.Meera Sheriffa Begum, Mass Transfer-Theory and Practice, PHI Learning Private Limited (2011) New Delhi.
- 3. Welty J.R., Wilson R.E. & Wicks C.E., Fundamentals of Momentum Heat and Mass Transfer, John Wiley
- 4. Foust A.S. et. al., Principles of Unit Operations, John Wiley
- 5. McCabe W.L., Smith J.C. & Harriot P., Unit Operations in Chemical Engineering, McGraw Hill.
- 6. Seader J.D.& Henley E.J Separation Process Principles, John Wiley & Sons
- 7. Coulson J.M. & Richardson J.F., Chemical Engineering, Vol. II, ELBS, Pergamon.

<b>COURSE CONTENTS AND LECTURE SCHEDULE</b>						
No.		No. of Hours				
	MODULE 1 (6 hours)					
1.1	Molecular diffusion - mass fluxes $J_A$ and $N_A$ - Fick's law.	1				
1.2	Diffusivity and estimation -steady state diffusion of A through stagnant B and equimolar counter diffusion in binary gases, liquids and multi component gas mixtures.	1				
1.3	Mass transfer coefficients, dimensionless groups - analogy between mass, heat and momentum transfer.	1				
1.4	Basic concepts and assumptions involved in theories of mass transfer: penetration and surface renewal theories.	1				
1.5	interphase mass transfer - equilibrium - diffusion between phases - two-film theory.	1				
1.6	Local and overall k-type coefficients.	1				
	MODULE II (9 hours)					
2.1	Gas-Liquid contacting equipments for mass transfer operations.	1				
2.2	Single stage and multistage contact.	1				
2.3	Tray towers, tray types and general features of tray designs (qualitative treatment).	1				
2.4	Continuous contact equipments.	1				
2.5	wetted wall columns, venturi scrubbers.	1				

2.6	Packed columns, packing materials and characteristics.	1
2.7	General constructional details of packed columns.	1
2.8	Factors affecting column performance-flooding, priming, coning, weeping, loading etc.	1
2.9	Comparison between plate and packed columns.	1
	MODULE III (6 hours)	
3.1	Distillation- Vapour-Liquid Equilibria.	1
3.2	boiling- point diagram and equilibrium curves.	1
3.3	relative volatility, application of Raoult's law.	1
3.4	Distillation methods- flash distillation.	1
3.5	Simple distillation or Differential distillation/ Binary distillation.	1
3.6	Steam distillation, Problems.	1
	MODULE IV (8 hours)	
4.1	Fractionation of binary mixtures, Principle of fractionation.	1
4.2	Fractionation in plate columns.	1
4.3	condensers and reboilers.	1
4.4	Material and energy balance, Design of fractionation columns by McCabe - Thiele method - basic assumptions.	1
4.5	feed quality and feed line.	1
4.6	number of plates, feed plate location.	1
4.7	total reflux, minimum reflux, optimum reflux.	1
4.8	plate efficiency, cold reflux and open steam.	1
	MODULE V (7 hours)	
5.1	Gas-Liquid contacting equipments for mass transfer operations - single stage and multistage contact.	1
5.2	Tray towers, tray types and general features of tray designs (qualitative treatment).	1
5.3	Continuous contact equipment, wetted wall columns, venturi scrubbers.	1

5.4	Packed columns, packing materials and characteristics.	1
5.5	General constructional details of packed columns.	1
5.6	Factors affecting column performance-flooding, priming, coning, weeping, loading etc.	1
5.7	Comparison between plate and packed columns.	1

CO Assessment Sample Questions							
1	Ammonia is diffusing $1/3 N_2$ and $2/3 H_2$ by volum	through e The	n a stag	gnant g	as mixt re is 200	ure cons	isting of m ² and
1	temperature 54 °C. C	Calculat	total r	rate of	diffusio	on of an	nmonia
	through a film of gas	0.5 m	m thick	c, wher	1 concer	ntration	change
	across the film is 10%	to 5% l	oy volu	me. The	e diffusi	vity of an	nmonia
	in the gas mixture is 2	.45×10	$-5 \text{ m}^2/\text{s}$	•			1
2	m/s on a wet solid sur difficult to determ experimentally. How geometry under sim	rface ir nine ever, l ilar flo	nmerse the neat tr ow cor	ed in the mass ransfer ndition	transf transf data s are a	ng at a ve ng stream er coe for the available	n. It is fficient same . Heat
	capacity and density (	optain of the	ea as o	0.4 X I vture a	.0~ KW/ ure 1 k.1	/ M²K. II I/kaK an	ne neat
	$kg/m^2$ . Calculate the va	lue of k	$c_c$ for the	e given	process.	Given Pi	c = 0.77
	and Sc = $0.59$			C	1		
	for the gas mixture.	Jovono	and 35	% (mo	le) Octor	no is fod t	o o nine
3	A feed of 05 % (filole) F still through a pressure chamber. The vapour a to be in equilibrium. composition of the top given below.	reduciand liquand liqu	ng valuid leav uid leav (mole) ottom p	% (fild) ve into ving the ) of feed products	e o Ctar o a flas e chamb d is vap s. Equili	sh diser er are as orized, fi	igaging ssumed ind the ata are
	Mole fraction of Hexane in liquid (x)	1.00	0.69	0.40	0.192	0.045	0.00
4	Mole fractions of Hexane in vapor (y)	1.00	0.932	0.78	0.538	0.1775	0.00
	A mixture of benzene a to be	ind tolu	iene is	contair	ning 38 1	nol % be	nzene is
	separated to give a pro bottom product with 4	oduct o mol %	f 90 mo benzer	ol % of ne. The	benzene feed ent	at the to ters the o	op, and column

at its bubble point and vapour leaving the column is condensed

	and provides product and reflux. It is proposed to operate the unit with reflux ratio of 3.0. Determine the number of theoretical plates and locate the feed plate. The vapour pressures of pure benzene and toluene are 1460 mm Hg and 584 mm Hg respectively. Total pressure is 750 mmHg.
5	Explain with a neat sketch the working of tray tower and problems associated with its working.

								L	Т	Р	J	S	С	Yea	r of
24CH	J502	KII	NETIC	s and	REA	CTOR								Intro	ductio
		DE	SIGN						•	•	0	_	_	1	n O 4
								2	U	2	2	5	5	20	24
Pream	ible:	The	cour	se i	s de	esigned	l to	p	rovi	ide	ŝ	stuc	ler	nts w	ith a
compr	comprenentsive														
under	understanding of the fundamental principles and practical aspects														
some processes. Inrough a															
everci	combination of theoretical discussions, practical examples, and hands-on														
neces	scs, II.	1300	luze d	lesion	b cyu. And	ontim	icins v ize ch	em	i u.	l nr			ug ee	$\mathbf{R}_{\mathbf{v}}$ th	e end
of the	cours	e sti	udent:	s will	have	a prof	ound	anr	rea	riat	ior	n fo	r t	he int	ricate
mecha	anisms	s the	at gov	ern c	hemi	cal re	action	apr s 2	and	1 t1	hei	r r	iva	otal ro	ole in
shapi	ng the	land	scape	of mo	dern o	chemi	cal eng	ine	eri	ng.		- r			
Prerec	uisite	: Nil							-	8					
Cours	e Outo	ome	s: Afte	r the c	comple	etion o	f the co	our	se t	he	stı	ıdeı	nt	will be	able
to					1										
CO1	Apply	y kno	owledg	ge fror	n sto	ichiom	letry, 1	cine	etic	s a	nd	re	act	tor des	sign
	to so	lve													
	comp	lex ei	nginee	ring pi	roblen	ns	•			1					
CO2	Analy	ze pi	cocess	reacto	or dat	a and o	determ	ine	rat	te la	aw	par	an	neters i	or
	react	ions													
CO3	Annly	the	oretica	al kno	wledg	e from	stoic	nior	net	rv	ki	neti	<b>CS</b>	and re	eactor
000	desig	n	oreciec		meas	,0 11 011		1101	1100	<b>1</b> y ,	111	100	.00	and r	uctor
	to r	eal-w	vorld s	scenar	rios c	onside	ering e	cor	on	nic,	sa	fety	y,	ethica	1
	a	nd er	nviron	menta	al fact	tors.						_			
CO4	Devel	lop oj	otimal	opera	tional	l condi	tions f	or i	dea	ıl re	eac	tor	wi	th sing	jle
	and r	nulti	ple rea	action	s										
CO5	Apply	y the	e the	mody	nami	c prin	ciples	to	u	nde	ers	tan	d	the n	C
	isoth	erma	1												
	beha	viour	of rea	ctions		DO 14									
00	<b>DO</b> 1	DOO	DOO	<b>DO</b> 4			APPING	r D	20	<b>D</b> (	20		1	<b>DO11</b>	<b>DO10</b>
CO	POI	P02	P03	P04	P05	P06	PO7	P	08	P	9	PO 0	T	POII	PO12
<b>CO1</b>	3	3	3	2						-	_	3	;		2
CO2	3	3	2	2							_				2
CO3	3	3	3	2		3	3	,	3		3	3	;		2
CO4	3	3	2								_				2
CO5	3	3	2												2

Asse	ssment Patte	ern	for The	ory co	mpone	ent		
	Continuou	ls A	ssessme	ent To	ols	End Somester		
Bloom's Category	Test1		Test2 Oth too		er Exar els		nination	
Remember			~	V	/	<ul> <li>✓</li> </ul>	,	
Understand			~	V	/	<ul> <li>✓</li> </ul>	•	
Apply			~	V	/	<ul> <li></li> </ul>	,	
Analyse				V	/			
Evaluate				V	/			
Create				V	/			
As	sessment Pat	tter	n for La	b com	ponen	t		
Bloom's Ca	egory		C	ontin	uous A	ssessment Tools		
Dioonii s Ca	legoly		Class work			Test1		
Remember								
Understand			<b>v</b>			<b>v</b>		
Apply			<b>v</b>				/	
Analyse			✓					
Evaluate								
Create								
Asse	ssment Patte	ern	for Proj	ect co	mpone	ent		
Bloom's Cat	egory		<b>Continuous Assessment Tools</b>					
Bioom 5 Cat	cgory	E	Evaluati	on 1	Eval	uation 2	Report	
Remember								
Understand			✓			✓		
Apply						<b>v</b>		
Analyse			~			✓		
Evaluate						<b>v</b>		
Create						<b>v</b>		
	Mark Di	stri	ibution	of CIA				

Course Structure [L-T-P-J]	Attendance	Theory [L- T]		Practica 1 [P]		Project [J]		Total Mark
		Assignment	Test- 2	Class work	Evaluatio n 1	Evaluation 2	Repor t	S
2-0-2-2	5	10	10	15	5	10	5	60

Total Marks distribution							
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration				
100	60	40	2				

End Semester Examination [ESE]: Pattern								
PATTERN	PART A	PART B	ESE Marks					
PATTERN 2	Total Marks: 0	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5×8 = 40 marks) Time: 2.5 hours Total Marks: [5×8 =40 marks]	40					

#### SYLLABUS

#### **MODULE I: Introduction**

Scope of Chemical Reaction Engineering, Classification of reactions, Rate equation and rate of reaction, Factors affecting rate of reaction, Chemical kinetics and Thermodynamics Equilibrium, Temperature dependency of rate constant from Arrhenius Collision and Transition state theories. Molecularity and order of

reactions.

#### **MODULE II: Non-Elementary Reactions**

Difference between elementary and non- elementary reactions. Kinetic models and

mechanisms for non-elementary reactions and types of reactors.

#### MODULE III: Homogeneous Reactions & Design of Ideal Reactors

Homogeneous Reactions: Interpretation of batch reactor data. Constant & Variable

Volume batch reactor. Analysis: Differential method, Integral method, half-life method, method of excess and method of isolation (for Reversible and Irreversible reactions up to second order)

Design of Ideal Reactors: Concept of ideality, Development of design equations for

batch, tubular and stirred tank reactors for both constant and variable volume reactions. Evaluation of rate equations from data obtained in these reactors (Derivations in this module evaluated in the examination may be limited to first and order reactions)

MODULE IV: Multiple Reactor Systems & Design Of Reactors

Multij parall	ple Reactor Systems: Plug flow and Mixed flow reactors in el	Series &					
reacti	ons, Reactors of different types and sizes in series, Comp	arison of					
Ideal	Ideal Reactors and General graphical comparison (only first order						
reacti	ons to be considered)						
Desig	n Of Reactors For Multiple Reactions: Design of Batch rea	ictor, Plug					
and							
Mixed	l flow reactors for Parallel reactions (Only irreversible reaction	ons must					
be con	nsidered)						
MODU	JLE V : Non-Isothermal Reactors:						
Introd proce	luction, Material, Energy balances and conversions, Design dure (For						
single	/simple reactions only). Optimum temperature Progression.						
Text b	ooks						
1. Oc Wi	tave Levenspiel, Chemical Reaction Engineering, 3rd Edition lev & Sons, 2001	n, John					
2. Н 🕄	Scott Fogler, "Elements of Chemical Reaction Engineering", Pren	tice Hall					
of							
Inc	dia.						
Refere	nce books						
1. Ja	mes J Carberry, "Chemical & Catalytic Reaction Engineering", I	McGraw					
Hil	1						
2. K.C	G Denbigh& J.C.R Turner, "Chemical Reactor Theory- An						
Int	roduction", Cambridge University Press.						
<b>3.</b> La:	nny D Schmidt, "The Engineering of Chemical Reactions", O	xford					
Un	iiversity						
Pre	ess.						
4. Ro	nald W. Missen, Charles A. Mims, Bradley A. Saville, "Introdu	ction to					
Ch	emical Reaction Engineering and Kinetics", John Wiley & Sor	ns.					
5. Srr	hith J.M, "Chemical Engineering Kinetics," McGraw Hill.						
	COURSE CONTENTS AND LECTURE SCHEDULE						
No		No. of					
110.		Hours					
	MODULE 1 (4 hours)						
1.1	Scope of Chemical Reaction Engineering, Classification of reactions	1					
1.0	Rate equation and rate of reaction, Factors affecting	1					
1.2	rate of	1					
	reaction,						
1.3	Chemical kinetics and Thermodynamics Equilibrium,	1					
	Temperature dependency of rate constant from						
1.4	Arrhenius Collision and Transition state	1					
	theories. Molecularity and order of						
	reactions						

	MODULE II (3 hours)							
2.1	Difference between elementary and non- elementary reactions	1						
2.2	Kinetic models and mechanisms for non-elementary reactions	1						
	and types of reactors.							
2.3	Kinetic models and mechanisms for non-elementary reactions	1						
	and types of reactors.							
	Interpretation of batch reactor data Constant & Variabla							
3.1	Volume	1						
	batch reactor. Analysis: Differential method							
3.2	Integral method, half-life method,	1						
3.3	method of excess and method of isolation (for Reversible and	1						
	Irreversible reactions up to second order							
3.4	Concept of ideality, Development of design equations for batch	1						
	reactor							
3.5	tank	1						
	reactors for both constant and variable volume reactions.	1						
3.6	tank	1						
	reactors for both constant and variable volume reactions.	1						
3.7	tank	I						
38	Evaluation of rate equations from date obtained in these	1						
5.0	reactors	1						
	MODULE IV (6 hours)							
4.1	Plug flow and Mixed flow reactors in Series & parallel reactions	1						
4.2	Plug flow and Mixed flow reactors in Series & parallel reactions	1						
4.3	Reactors of different types and sizes in series	1						
4.4	Comparison of Ideal Reactors and General graphical comparison	1						
4.5	Design of Batch reactor for Parallel reactions	1						
4.6	Design of Plug and Mixed flow reactors for Parallel reactions	1						
	MODULE V (3 hours)							
5.1	Introduction, Material, Energy balances and conversions	1						

5.2	Design procedure (For single/simple reactions only). Optimum	1
	temperature Progression.	
5.3	Design procedure (For single/simple reactions only). Optimum	1
	temperature Progression.	

## LAB COMPONENT

Including laboratory experiments in a course is an excellent way to enhance the understanding of various concepts in the syllabus. It provides students with hands-on experience and practical application of the theoretical knowledge they acquire in the classroom. It also fosters critical thinking, problem-solving, and practical skills that are valuable in their academic and professional pursuits. Here are some key points to consider when incorporating laboratory experiments into a course:

Alignment with Course Objectives: Ensure that the laboratory experiments align with the course objectives and learning outcomes. The experiments should reinforce and complement the concepts taught in the classroom.

Relevance: Select experiments that are relevant to the course material and provide real-world examples of the concepts being discussed. This helps students see the practical applications of what they are learning.

Safety: Safety is paramount in a laboratory setting. Make sure that all experiments are conducted in a safe environment, and students are aware of the safety protocols and precautions.

Equipment and Materials: Ensure that the necessary equipment and materials are available and in good working condition. Students should have access to the tools and resources needed to conduct the experiments effectively.

Clear Instructions: Provide clear and detailed instructions for each experiment. This should include the purpose of the experiment, the procedures to be followed, data collection methods, and any specific requirements.

Data Analysis and Interpretation: Include a component for data analysis and interpretation in the laboratory reports. This encourages critical thinking and helps students draw meaningful conclusions from their experiments.

Variety: Offer a variety of experiments that cover different aspects of the course material. This can include quantitative experiments, qualitative observations, and even open-ended, exploratory experiments.

Feedback and Assessment: Develop a system for assessing and providing feedback on

students' laboratory reports and performance. This assessment should contribute to their overall course grade.

Integration with Theory: Encourage students to connect the results of their experiments with the theoretical concepts discussed in the classroom. This reinforces their understanding and helps bridge the gap between theory and practice.

Practical Skills: Besides reinforcing theoretical knowledge, laboratory experiments should also help students develop practical skills, such as experimental design, data collection, and analysis.

Reflection: Encourage students to reflect on their experiences during the experiments. This can be done through post-lab discussions or written reflections, allowing students to think critically about what they learned.

Flexibility: Be open to adapting the laboratory component as needed. Sometimes, students may discover unexpected results or encounter challenges. This flexibility can turn such situations into valuable learning experiences.

Resources and Support: Provide access to resources, including lab manuals, research papers, and additional readings, to help students delve deeper into the concepts explored in the experiments.

comp	renensive coverage of u	ne course	2.
No.	Торіс	No. of Hours [24]	Experiment
1	Kinetic study	2	Kinetic studies using batch reactor for an
			equimolar bimolecular reaction
2	Kinetic study	2	Kinetic studies using batch reactor for a non-equimolar bimolecular reaction
3	Reactor Design	2	Isothermal plug flow reactor
4	Reactor Design	2	Mixed flow reactor
6	RTD Study	2	RTD studies in a mixed flow reactor and plug flow reactor
8	RTD Study	2	RTD studies in packed bed reactor

## LESSON PLAN FOR LAB COMPONENT

The concepts in the syllabus that can be illustrated through laboratory experiment should be included in the lab component part to ensure comprehensive coverage of the course.

9	Kinetic study	2	Effect of temperature on the kinetics of the
			reaction
10	Reactor Design	2	UV Photo Reactor
11	Kinetic study	2	Determination of activation energy
12	Reactor Design	2	Combined Flow Reactor

Incorporating a project component in a course complements theoretical learning and laboratory experiments by providing students with the opportunity to synthesize, apply, and deepen their understanding of course concepts. It also encourages critical thinking, problem-solving, and creativity, which are valuable skills for students' academic and professional growth. Here are some key points to consider when including a project component in a course to cover the concepts from the syllabus:

Alignment with Course Objectives: Ensure that the project aligns with the course objectives and learning outcomes. The project should provide an opportunity for students to apply the theoretical knowledge they've gained.

Relevance: Select project topics that are directly related to the course material. The project should enable students to explore and apply the concepts covered in the classroom and laboratory sessions.

Project Types: Consider various project types, such as group projects, case studies, or practical applications. The choice of project type should depend on the course's goals and the specific concepts being covered.

Clear Guidelines: Provide clear project guidelines and expectations. Include information on project deliverables, deadlines, and assessment criteria to ensure that students understand what is expected of them.

Student Choice: If possible, allow students to choose project topics that align with their interests or career goals. This can increase motivation and engagement.

Resources and Support: Ensure that students have access to the necessary resources, including literature, software, equipment, or guidance from instructors or mentors.

Interdisciplinary Approach: Encourage interdisciplinary projects that draw on concepts from multiple areas of the syllabus. This can promote a holistic understanding of the subject matter.

Peer Collaboration: Encourage collaboration among students for group projects. Teamwork can foster problem-solving skills and diverse perspectives.

Reflection and Presentation: Require students to reflect on their project experiences and present their findings to the class. This promotes critical thinking and communication skills.

Assessment Criteria: Clearly define how the project component will be graded.

Assess not only the final product but also the process, research, problemsolving, and communication skills.

Feedback and Revision: Provide feedback on project proposals and guide students in the right direction. Allow them to revise and improve their work based on feedback.

Integration with Theory and Lab: Emphasize the connection between the project and the theoretical and laboratory components of the course. Encourage students to apply what they've learned in these sessions to their projects.

Real-World Applications: Whenever possible, choose projects that have real-world

applications. This can help students see the practical relevance of their coursework. Sample project topics for students to work on:

A mixture of 28% and 72% air is charged to a flow reactor in which is oxidized.

 $2SO_2 + O_2 \longrightarrow 2SO_3$ 

(a) First, set up a stoichiometric table using only the symbols (i.e.,).

(b) Next, prepare a second table evaluating the species concentrations as a function of conversion for the case when the total pressure is 1485 kPa (14.7 atm) and the temperature is constant at 2278 °C.

(c) Evaluate the parameters and make a plot of each of the concentrations  $SO_2$ ,  $SO_3$ ,  $N_2$  as a function of conversion.

d) Express the Rate Law for SO₂ Oxidation in Terms of Partial Pressures and

Conversions.

1

2

The reversible gas-phase decomposition of nitrogen tetroxide,  $N_2O_4$ , to nitrogen dioxide,  $NO_2$ ,

 $N_2O_4 \, {{\overbrace{\longleftarrow}}} \, 2NO_2$ 

is to be carried out at constant temperature. The feed consists of pure  $N_2O_4$  at 340 K and 202.6 kPa (2 atm). The concentration equilibrium constant  $K_C,$  at 340 K is 0.1 mol/dm³ and the rate constant is  $0.5 min^{-1}.$ 

(a) Set up a stoichiometric table and then calculate the equilibrium conversion in a constant-volume batch reactor.

(b) Calculate the equilibrium conversion of in a flow reactor.

(c) Assuming the reaction is elementary, express the rate of reaction solely as a function of conversion for a flow system and for a batch system.

(d) Determine the CSTR volume necessary to achieve 80% of the equilibrium

conversion.

Sixty-five percent of the ethylene produced is used in the manufacture of fabricated plastics, 20% for ethylene oxide, 16% for ethylene dichloride and ethylene glycol, 5% for fibers, and 5% for solvents. Determine the plug-flow reactor volume necessary to produce 300 million pounds of ethylene a year by cracking a feed stream of pure ethane. The reaction is irreversible and follows an elementary rate law. We want to achieve 80% conversion of ethane, operating the reactor isothermally at 1100 K and at a pressure of 6 atm. The specific reaction rate at 1,000 K is 0.072 s⁻¹ and the activation energy is 82,000 cal/mol.

	The gas-phase reaction
4	$2NOC1 \longrightarrow 2NO + C1_2$

is carried out at  $425^{\circ}$ C and 1641 kPa (16.2 atm). Pure NOCl is to be fed, and

the reaction follows an elementary rate law.2 It is desired to produce 20 tons of NO per year in a microreactor system using a bank of ten microreactors in parallel. Each microreactor has 100 channels with each channel 0.2 mm square and 250 mm in length.



(a) Plot and analyze the molar flow rates as a function of volume down the length of the reactor. The volume of each channel is 10-5 dm³.

(b) Calculate the reactor volume necessary to achieve 85% conversion.
 Select a homogeneous reaction system from an industrial context and analyze

its behavior using both kinetics and thermodynamics. Investigate how reaction conditions impact the overall process.

6 Design a hypothetical chemical reactor based on the principles

the course. Evaluate the reactor's efficiency under various conditions and propose improvements for optimization.

Investigate the design and operation of interconnected reactor systems.

Analyze the advantages and challenges of series and parallel configurations in a given chemical process

8 Select a chemical reaction that is sensitive to temperature variations. 9 Design and assess the performance of a non-isothermal reactor, considering

safety, efficiency, and overall process control
 Analyze the environmental impact of a chemical process,
 considering the

stoichiometry, kinetics, and reactor design aspects. Propose sustainable practices and alternative reaction pathways

Propose an innovative design for a chemical reactor that addresses a
 specific industrial need. Considerations should include efficiency, safety, and environmental impact

<u>Note</u>:- Projects need not be restricted to the above topics. Students are encouraged to choose any application problems, in the course domain, which they desire to work on.

### LESSON PLAN FOR PROJECT COMPONENT

The concepts in the syllabus that can be covered through the project shall be included in the project component part to ensure comprehensive coverage of the course through theory, lab and project sessions.

#### Total No. of Class Hours: 24

12 Hours of self-study hours also should be utilized for the development of the complete project.

No.	Торіс	No. of Class Hours [24]
1	Preliminary Design of the Project	4
2	Zeroth presentation (4 th week)	2
3	Project work - First Phase	4
4	Interim Presentation (7 th and 8 th weeks)	4
5	Project work - Final Phase & Report writing (discussions in class during project hours)	6
6	Final Evaluation and Presentation (11 th and 12 th weeks)	4

	CO Assessment Sample Questions
1	Analyze the reaction A+B→C in a homogeneous system. Determine the rate law. Compare and contrast the design principles of a continuous stirred-tank reactor (CSTR) and a plug-flow reactor (PFR). In what scenarios would one be more efficient than the other
2	Design an interconnected system of reactors for a multistep reaction. Discuss the advantages and challenges of using series and parallel configurations in your design.
3	Explain how temperature variations can impact the rate and selectivity of a chemical reaction. Propose design considerations for a non-isothermal reactor to optimize performance
	Explain how stoichiometry, kinetics, and reactor design are interconnected in a chemical process. Provide an example scenario where knowledge from each discipline is crucial.
5	Given a real-world chemical engineering problem involving a complex reaction, outline the steps you would take to analyze and solve the problem. Consider economic and environmental factors

								L	Т	Р	J	S	С	Yea	r of
24CH	T503	1	RANS	PORT	PHE	NOME	NA							Intro	ductio
								2	1	0	0	2	3	20	n 24
Droom	hlo: 7	rhia.	001180	o int	roduo		ounli	<b>4</b>	ho	tuvo	010	<b>4</b>	bro	20	nonort
phenor	mena,	1115	cours	e m	liouuc	es c	Supir	ng	be	twe	en	L.	me	e ua	nsport
mome	ntum,	heat	and	mas	s tra	inspor	t w	ith	ap	plie	cati	on	S	in va	rious
discip	disciplines in engineering and science, and will demonstrate to the														
students the common mathematical structure of transport problems. The															
course will deal with flow problems involving Newtonian and non-Newtonian															
fluids, solid-state heat conduction and convection, binary diffusion with or without chemical reaction.															
Prereq	uisite:	Nil													
Course	e Outco	mes:	After t	he cor	npletio	on of t	he co	urse	e th	e st	ud	ent	wi	ll be al	ole to
CO1	Expla	in the	mech	anism	s of m	omen	tum,	hea	t ai	nd r	nas	ss t	rar	nsfer	
CO2	Solve	indu	strial	probl	lems	involv	ing	isot	her	ma	1 s	tea	ldy	state	
	mome	entum		-			0						5		
	transf	fer in s	simple	geom	etries	using	shel	l mo	me	ntu	m	bal	ano	ce	
CO3	Obtai	n ana	lytica	l solu	itions	of se	electe	ed s	im	ple	en	gir	iee	ring s	teady
	state						11								
004	proble	ems of	heat 1		er usir	ng she	ll ene	ergy	bal	anc	e e	~			tooder
C04	Obtai state	n ana	uytica	I SOIL	itions	OI SE	electe	ea s	sim	pie	en	gir	iee	ring s	teady
	nrohle	ms of	mass	trans	fer 11si	ing sh	ell m	ass	hala	anc	e				
CO5	Liken	the s	similar	rities	of tra	nspor	t pro	oces	s b	etw	veei	n n	nor	nentu	m,
	heat a	and				-	-								·
	mass	transp	ort.												
					CO - P(	O MAP	PING	•							
CO	PO1	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	' P	08	P( 9	<b>)</b>	PO	10	PO11	PO12
CO1	3														3
CO2	3														2
CO3	3	3													2
CO4	3	3													2
CO5	3	3													2
				As	ssessm	ent Pa	atter	n							
				Conti	nuous	s Asses	sme	nt T	ool	5		En	d S	Semest	er
Bloom's Category		у.	Tes	t 1	Tes	t 2	Ot: to	her ols	Examination				on		
Remember				~		V	•	L	/					✓	
Understand				V		V	•	L	/					<ul> <li>Image: A start of the start of</li></ul>	
Apply				~		V	•	L	/					✓	
Analys	e							L	/						
Evalua	ate							L	/						
Create								L	/						

Mark Distribution of CIA								
Course		The	Theory [L- T]					
Structur e [L-T-P- J]	Attendance	Assignment	Test-1	Test-2	Marks			
2-1-0-0	5	15	10	10	40			

Total Mark distribution						
Total Mark	s CIA (Marks)	ESE (Marks)	ESE	Duration		
100	40	60	3	3 hours		
	<u>End Semester E</u>	xamination [ESE]: Patte	rn			
PATTERN	PART B		ESE Marks			
PATTERN 1	10 Questions, each questio n carries 2 marks Marks: (2x10 =20 marks)	<ul> <li>2 questions will be from</li> <li>each module, out of</li> <li>1 question should answered. Each question can have a maximus subdivisions.</li> <li>Each question can marks.</li> <li>Marks: (5x8 = 4 marks) Time: 3 hours</li> </ul>	be given which ld be testion m of 2 ries 8	60		
	Total Marks: 20	Total Marks: [5x8 = 4 marks]	-0			

#### SYLLABUS

**MODULE I** : Introduction

Momentum, Energy and Mass Transport operations, Newton's law of viscosity(NLV),

Newtonian and Non-Newtonian fluids, Fourier's law of heat

conduction(FLHC), Fick's law of diffusion (FLD), Numerical problems.

MODULE II : Steady State Shell Momentum Balances

Different Flow situations, Steady state Shell momentum balances-Boundary conditions

applicable to momentum transport problems, Flow over a flat plate for Newtonian fluid and Non-Newtonian fluid, Flow through a circular tube for Newtonian fluid and Non-Newtonian fluid, Flow through Annulus. Flow between parallel plates and a slit. Numerical problems.

MODULE III : Steady State Shell Energy Balances

General Boundary conditions applicable to energy transport problems of chemical engineering, Heat conduction through compound walls, Overall heat transfer coefficient based on inner and outer surface area. Heat conduction with internal

generation by electrical, nuclear, viscous energy sources, Numerical problems. **MODULE IV** : Steady State Shell Mass Balances

Steady state shell mass balances, General Boundary conditions applicable to mass transport problems of chemical engineering, Diffusion through stagnant gas and liquid films, Equimolar counter diffusion. Numerical problems. Diffusion with homogeneous and heterogeneous reaction. Diffusion into falling film- Forced convection mass

transfer. Numerical problems.

**MODULE V** : Analogies Between Momentum, Heat And Mass Transport & Equations Of Change

Reynold's, Prandtl's and Chilton & Colburn analogies. Equations of change: Various

coordinate systems, Equation of continuity, Equation of motion; Navier-Stokes equation, Euler's equation, Equation of energy.

#### **Text books**

1. Bird R.B., Stewart W.C and Lightfoot F.N, Transport phenomena, John Wiley & Sons.

## **Reference books**

- 1. Theodore L, Transport Phenomena for Engineers by, International text book Company, U.S.A
- 2. Geankoplis, Transport processes and unit operations, 3rd, PHI, 1997.
- 3. Welty, Wicks and Wilson, Fundamentals of Heat, Momentum and Mass Transfer, John Wiley.
- 4. John C Slattery, Momentum, Energy and Mass transfer in continua, McGraw Hill, Co.
- 5. Robert S. Brodkey and Harry C Hersing, Transport Phenomena a Unified Approach, McGraw Hill Book Co.
- 6. Bennet C U and Myers J E, Momentum, Heat and Mass Transfer, Tata McGraw Hill

Publishing Co.

COURSE CONTENTS AND LECTURE SCHEDULE					
No.		No. of			
		Hours			
	MODULE 1 (7 hours)				
1.1	Momentum, Energy and Mass Transport operations	1			
1.2	Newton's law of viscosity	1			
1.3	Newtonian and Non-Newtonian fluids	1			

1.4	Fourier's law of heat conduction	1			
1.5	Fick's law of diffusion	1			
1.6	Numerical problems	1			
1.7	Numerical problems	1			
	MODULE II (7 hours)				
2.1	Different Flow situations, Steady state Shell momentum balances-Boundary conditions applicable to momentum transport problems	1			
2.2	Flow over a flat plate for Newtonian fluid and Non- Newtonian fluid	1			
2.3	Flow over a flat plate for Newtonian fluid and Non- Newtonian fluid	1			
2.4	Flow through a circular tube for Newtonian fluid and Non- Newtonian fluid	1			
2.5	Flow through Annulus	1			
2.6	Flow between parallel plates and a slit	1			
2.7	Numerical problems.	1			
	MODULE III (7 hours)				
3.1	General Boundary conditions applicable to energy transport problems of chemical engineering	1			
3.2	Heat conduction through compound walls	1			
3.3	Overall heat transfer coefficient based on inner and outer surface area	1			
3.4	Heat conduction with internal generation by electrical, nuclear, viscous energy sources	1			
3.5	Heat conduction with internal generation by electrical, nuclear, viscous energy sources	1			
3.6	Heat conduction with internal generation by electrical, nuclear, viscous energy sources	1			
3.7	Numerical problems.	1			
MODULE IV (9 hours)					
4.1	Steady state shell mass balances	1			
4.2	General Boundary conditions applicable to mass transport problems of chemical engineering	1			

4.3	Diffusion through stagnant gas and liquid films	1
4.4	Diffusion through stagnant gas and liquid films	1
4.5	Equimolar counter diffusion. Numerical problems	1
4.6	Diffusion with homogeneous and heterogeneous reaction	1
4.7	Diffusion with homogeneous and heterogeneous reaction	1
4.8	Diffusion into falling film- Forced convection mass transfer. Numerical problems.	1
4.9	Diffusion into falling film- Forced convection mass transfer. Numerical problems.	1
	MODULE V (6 hours)	
5.1	Reynold's, Prandtl's and Chilton & Colburn analogies	1
5.2	Reynold's, Prandtl's and Chilton & Colburn analogies	1
5.3	Equations of change: Various coordinate systems, Equation of continuity	1
5.4	Equation of motion; Navier-Stokes equation, Euler's equation	1
5.5	Equation of motion; Navier-Stokes equation, Euler's equation	1
5.6	Equation of energy	1

# **CO** Assessment Sample Questions

1	Explain the mechanism of momentum transfer between two parallel plates in
	which one is moving and the other stationary.
2	A fluid of constant density and viscosity is in a cylindrical container of radius
	R .The container is caused to rotate about its own axis (vertical) at an
	angular velocity $\Omega$ . Find the shape of the free surface at steady state.
	Derive expression for temperature profile for the flow of
3	incompressible Newtonian fluid between 2 co-axial cylinders, in
	which the outer cylinder
	rotates and inner one is held stationary.

4	A gaseous phase reaction $2A \rightarrow A_2$ is taking place on the surface of a catalyst. Assume that each catalyst particle is surrounded by a stagnant gas film through which A has to diffuse to reach catalyst. Using suitable assumptions develop an expression for the local rate of conversion and obtain the concentration profile in the gas film and molar flux through the film. Sketch the concentration profile.
5	Explain Reynold's analogy between heat, mass and momentum transfer.

								L	Т	P	J	s (	2 Yea	r of
24CH	P504		Part	Particle Technology									Introd	luctio
				-						2	0	<u>л</u> л	1	1
		<u>س</u> ا .		•	. 1		1	4	<b>–</b>			1	202	44
Pream	characteristics properties handling and processing of particles used for												the d for	
variou		les, p Justri		oplica	tions	nig ai Dri	nciple		siii sf	3 01 017/	p:	red	use use	and
equipr	o III. nento	usui	for	size 1	reduc	tion s	are di		51	512) 1	L De	sign		ts of
clarifie	ers, th	icken	ers ai	nd filt	ers a	re also	cove	ered.	350			Sigi	aspec	13 01
Prereq	uisite	e: Nil												
<b>Course Outcomes:</b> After the completion of the course the student will be able to														
<b>CO1</b> Analyze particle size distribution of a given sample.														
<b>CO2</b>	Selec	t suit	able e	equip	ment	for ha	andlin	ıg m	ate	rial	s i	n p	rocess	
	indus	stries	like											
	scree	ening,	class	sificat	ion,	sedim	entati	ion,	filt	rati	on	ete	c. using	5
000	fund	amen	tal co	ncept	•	4			: .	1		1	•	: <u>.</u>
CO3	Estin	nate ti en	ne ene	ergy r	equir	ement	s for a	a spo	ecili	led	ree	duci	10n 1n s	ize for
	mate	rial.												
<b>CO4</b>	Selec	t sui	table	meth	od fo	or stor	rage	and	tra	nst	201	tati	on of t	oulk
	solid	s in					-			-				
	proce	ess in	dustri	es.		•								
CO5	Desig	gn un	it ope	ratior	ı equi	ıpmen	t like	clar	1110	rs,	th	lcke	ners, fil	ters
	cic.			C	<b>CO</b> - 1	PO MA	PPIN	G						
СО	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	P	28	PO	Þ	<b>PO1</b>	PO11	<b>PO1</b>
										9	(	)		2
<b>CO1</b>	3	2						:	3	3		3		
<b>CO2</b>	3	2						:	3	3		3		2
CO3	3	3	3			2		:	3	3		3		2
<b>CO4</b>	3					2		:	3	3		3		2
<b>CO</b> 5	3	3	3						3	3		3		
		Ass	sessm	ent F	Patter	n for	Theo	ry c	om	por	161	ıt		
	•		Ст	ontii	nuou	s Asse	essmo	ent				End	L	
Bloom	n's		-	Tes	+1	Tes	st 2	Ot	her			Sen	nester	
Cale	gory			105		10.		toc	ols			Exa	minati	0
												n		
Remer	nber													
Under	stand	l												
Apply														
Analys	se													

Evaluate										
Create										
	Assessm	ent Patt	ern for	Lab con	nponer	ıt				
Bloom'	s Catego	orv		Continı	ious A	lssessi	mer	nt Tools		
Biotom	s cutog	51 y	(	Class w	ork		Tes	t1		
Remember										
Understand								]		
Apply								]		
Analyse								]		
Evaluate										
Create										
Mark Distribution of CIA										
	ů.	Th	eory [L-	<b>T</b> ]	Prac	tical [	[ <b>P</b> ]	S		
Course	nc	u			rk	2	1	ark		
	pr	Ĕ		Ņ	om	XAT		X		
[L-1-P-J]	teı	gn	est	est	ŝ	É	Ì	tal		
	At	ssi	Ĥ	Ĥ	la:	Lab		1 O		
		t A			0	_				
2-1-2-0	5	10	10	10	С	60				
	Т	otal Ma	rks dist	ribution		1				
Total Marks	CIA	(Marks)	ESE (Marks) ES					SE Duration		
100	6	50		40			2.	.5		
<u>E</u> 1	nd Seme	ster Exa	aminati	on [ESE	<u>]: Patt</u>	ern				
PATTERN	PART	Α		PART	В		E	SE		
			2			•	M	arks		
			2 questions will be given							
	which 1 question should									
	be answered. Each									
PATTERN 2			question can have a							
			maximu	m of	sub					
			divisions.					40		
			Each q	uestion	carrie	es 8				
			marks.	Marks:	(5x 8	= 40				
			markel							
			Time: 2.	5 hours						

Total Marks: 0 Total Marks: [5x8 = 40 marks]
SYLLABUS
MODULE I: Introduction and basic particle size analysis
<ul> <li>MODULE I: Introduction and basic particle size analysis</li> <li>Particle diameter and shape factor - particle size analysis - sieve analysis</li> <li>particle size distribution - cumulative and differential methods of analysis - mean diameters</li> <li>specific surface area and number of particles - screening - effectiveness and capacity of screens and factors affecting them - types of industrial screens sub- sieve analysis - pipette analysis - beaker decantation-elutriation.</li> <li>MODULE II: Particle Settling and separation</li> <li>Principles of free and hindered settling - equal settling particles - types of</li> </ul>
classifiers mechanical and non-mechanical, pneumatic classifiers - principles of mineral beneficiation methods - jigging - wilfley table - froth flotation, principles, additives, batch and continuous thickening - Kynch theory - design of
continuous thickener.
MODULE III: Principle of size reduction
Laws of comminution - mechanism and efficiency of size reduction - principles of important size reduction equipments - types and selection of equipment for all ranges - closed circuit and open circuit grinding - free crushing and choke feeding - wet and dry grinding. Particle size enlargement.
MODULE IV: Finicipie of intration
filtration - theory of constant pressure and constant rate filtration - cake porosity and compressibility - filter aids - optimum filtration cycle - types of batch and continuous filters (plate and frame, rotary, lear filters-construction and working) -washing of filter cakes - centrifugal filtration (Top suspended bask centrifuge,
reciprocating conveyor continuous centrifuge).
MODULE V: Air purification, particle storage & conveyors
Air separation methods - cyclone separation - electrostatic precipitation -Bag filters- venturi scrubber -Cottrell precipitator mixing of granular solids and pastes - mixing performance and effectiveness - mixers for non-cohesive and cohesive solids - storage and conveying of solids (numerical problems are not required) - silos, bins and hoppers - different types of conveyors (Belt, chain, screw, pneumatic) - selection of conveyors.

Text	books									
1. Me	1. McCabe W.L., Smith J.C. and Harriot P., Unit Operations									
of	of Chemical Engineering, McGraw Hill, New York 2001. 6th									
Ec	Edition									
2. Ar	2. Anup K Swain, Hemlata Patra, G.K.Roy ,Mechanical Operations,									
Mo	c-Graw-									
Hill Education.										
Reference books										
1. Coulson J. M. and Richardson J.F; Chemical Engineering Vol. 1 &										
2 Publishers: Butter worth – Heinemann Ltd. 2001-2002.										
2. Ch	ristie J. GeanKoplis, Transport processes & Unit Ope	ration,								
Pr	entice Hall international									
3. Ba	dger & Banchero, Introduction to Chemical Engineerin	ng, Mc-								
Gr	aw- Hill Education									
4. C.	M. Narayan, B.C. Bhattacharyya, Mechanical Oper	rations								
foi	Chemical									
Er	gineers, Khanna publishers.									
	COURSE CONTENTS AND LECTURE SCHEDULE									
No.		No. of								
	MODULE 1 (7 hours)									
1.1	Particle diameter and shape factor.	1								
1.2	Particle size analysis - sieve analysis	1								
1.3	Particle size distribution - cumulative and differential methods	1								
	of analysis - mean diameters									
1.4	There are a fing the statistic state of the	1								
1.4	Types of industrial screens	I								
1.5	Specific surface area and number of particles	1								
1.6	Screening - effectiveness and capacity of screens and	1								
	actors									
	Sub-sieve analysis - pipette analysis - beaker									
1.7	decantation-	1								
	elutriation									
	MODULE II (7 hours)									
0.1	Drin sinlag of free and himden description	1								
2.1	Principles of free and hindered settling	l								
2.2	Equal settling particles	1								

2.3	Types of classifiers-mechanical and non-mechanical, pneumatic	1
	classifier	
2.4	Principles of mineral beneficiation methods	1
2.5	Jigging - Wilfley table - froth flotation, principles, additives,	1
2.6	Batch and continuous thickening - kynch theory	1
2.7	design of continuous thickener	1
	MODULE III (7 hours)	
3.1	Laws of comminution, mechanismandefficiencyofsizereduction	1
3.2	Principles of important size reduction equipment's	1
3.3	Principles of important size reduction equipment's	1
3.4	Types and selection of equipment for all ranges	1
3.5	Closed and open circuit grinding	1
3.6	Free crushing and choke feeding	1
3.7	Wet and dry grinding	1
	MODULE IV (7 hours)	
4.1	Filtration - theory of constant pressure and constant rate filtration	1
4.2	Filtration - theory of constant pressure and constant rate filtration	1
4.3	Cake porosity and compressibility - filter aids - optimum filtration cycle	1
4.4	Types of batch and continuous filters (plate and frame, rotary, leaf filters-construction and working)	1
4.5	Types of batch and continuous filters (plate and frame, rotary, leaf filters-construction and working)	1

4.6	Washing of filter cakes - centrifugal filtration (Top suspended	1
	basket centrifuge, reciprocating conveyor continuous centrifuge)	
4.7	Washing of filter cakes - centrifugal filtration (Top suspended	1
	basket centrifuge, reciprocating conveyor continuous centrifuge)	
	MODULE V (8 hours)	
5.1	Air separation methods-cyclone separation, bag filter	1
5.2	Venturi scrubber -Cottrell precipitator	1
5.3	Mixing of granular solids and pastes	1
5.4	Mixing performance and effectiveness	1
5.5	Mixers for non-cohesive and cohesive solids	1
5.6	Storage and conveying of solids (numerical problems are not required) - silos, bins and hoppers	1
	required - shos, bills and hoppers	
5.7	Different types of conveyors (Belt, chain, screw, pneumatic)	1
5.8	Selection of conveyors.	1

## LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of Hours	Experiment			
1	Principles of free and hindered settling	2	Free Settling			
2	Particle size analysis - sieve analysis	2	Sieve Analysis			
3	Screening - effectiveness and capacity of screens and factors affecting them	2	Effectiveness of Screen			
4	Laws of comminution, mechanism and efficiency of size reduction	2	Laws of Crushing			
5	Sub-sieve analysis - pipette analysis - beaker decantation-	2	Beaker Decantation			
	elutriation					
6	Sub-sieve analysis - pipette analysis - beaker decantation- elutriation	2	Pipette Analysis			
7	Principles of free and hindered settling	2	Sedimentation			
8	Types of batch and continuous filters (plate and frame, rotary, leaf filters- construction and working)	2	Leaf Filter			
9	& (b) Types of batch and continuous filters (c) Air separation methods- cyclone separation (d) Sub-sieve analysis - elutriation	2	<ul> <li>Study of</li> <li>a. Plate and Frame Filter press</li> <li>b. Rotary drum filter</li> <li>c. Cyclone Separator</li> <li>d. Elutriator</li> </ul>			

Types of batch and continuous filters (plate and frame, rotary, leaf filters- construction and working)a. Ball Mill b. Hammer Mill c. Jaw Crusher d. Basket Centrifuge a. Wilfer Table				Study of
Principles of mineral beneficiation methods	10	Types of batch and continuous filters (plate and frame, rotary, leaf filters- construction and working) Principles of mineral beneficiation methods	2	<ul> <li>a. Ball Mill</li> <li>b. Hammer Mill</li> <li>c. Jaw Crusher</li> <li>d. Basket Centrifuge</li> <li>e. Wilfey Table</li> <li>f. Belt Conveyor</li> <li>g. Mineral Jig</li> <li>b. Froth Floatation Cell</li> </ul>

CO Assessment Sample Questions												
	A qu cumı	artz mix ulative so	ture is scre creen analys	ened the	cough a 10- ed, overflow	mesh screen. and underflov	The v are					
	given in the table. Calculate the mass ratios of the overflow and											
	underflow to feed and the overall effectiveness of the screen.											
							_					
		Mesh	Dp (mm)	feed	overflow	underflow						
		4	4.6	0	0	0						
		6	3.3	0.02	0.07	0						
_		8	2.3	0.15	0.43	0						
1		10	1.6	0.47	0.85	0.19						
		14	1.1	0.73	0.97	0.58						
		20	0.8	0.88	0.99	0.83						
		28	0.5	0.94	1	0.91						
		35	0.4	0.96		0.94						
		65	0.2	0.98		0.97						
		pan		1		1						
	-			•								
2	Deve plant	lop a deta z.	ailed process	s for the	beneficiation	n of metal in ir	on					
	List	the adva	ntages of E	Bond's la	w over Ritti	inger's law. A	mill					
3	crushes 50 tons per hour of solids from 4 cm to 1 cm and											
Ũ	consumes 50 KW power. Determine the power required to reduce											
	the s	ize of the	product fro	m 1 cm								
	to 5:	mm for t	he same cap	pacity.	and mathed	a used in fa	od					
4	proce	essing	nam umere	int Store	age methods	s uscu III 10	ou					
	indu	stries.										
5	Illus appli	trate the ications.	working of 1	nixer ext	truders. List	its industrial						

24HI	J <b>T56</b> 5	EC	ONOM OR CI	ICS A HEMI	ND MA CAL II	ANAGE NDUS'	ement Fries		Т	Р	J	S	С	Ye Intro n	ar of ductio
								3	0	0	0	3	3	20	)24
Pream	Preamble: The economics and management of chemical industries is one of											one of			
the ke	ey area	as whe	ere Ch	iemica	al Eng	gineer	needs	focu	ıs.	Th	is d	cou	ırs	e focu	ses on
econo	mic a	nd co	st and	alysis	of eng	gineer	ing pr	oject	S, ¦ ส +	givi	ng	าก ร่าง	.S18	ghts or	tools
altern	atives	si esu The	niauo. bute	n, pro ents	will f	nty ai ne abl	e to o	s and vet a	u u se	ak	പ്പട	y u 11n	ec. Ide	rstand	ing of
conce	pts an	d prir	nciples	s of ei	nginee	ering e	conon	nv ar	nd	to	de	evel	lor	profi	ciency
with 1	netho	ds for	maki	ng rat	tional	decis	ions r	egare	lin	g p	oro	ble	m	s likely	to be
encou	encountered in professional practice.														
Prerequisite: Nil															
<b>Course Outcomes</b> : After the completion of the course the student will be able to															
CO1	<b>O1</b> Apply the concept of time value of money, unacost, capitalized cost									l cost					
CO2	Exp	lain t	the co	ncep	t of (	depred	ciation	an	d	app	oly	d	iffe	erent	
	met	hods	for			-									
000	calc	ulating	g depr	reciation	on in	real lif	te proj	ects.		· •			(	<b>2</b> 4 1	
CO3	App		erent t	echni	ques a	and to	ols for	cost	es	t1m		lon	01	the pr	ojects
CO4	sele	ction a	and ra	meth anking	ods ic g.	or calc	ulatin	ig pro	0111	ab	111t	y 10	or	projec	t
CO5	App proj	ly the ect.	conce	pt of t	oreak	even a	nalysi	s for	sel	lect	ing	g /	de	signin	ga
CO6	Exp	lain t	he pr	rincip	le of	accou	Inting	, pre	epa	re	fir	nar	ıci	al	
	stat	ement	is and	d ana	lyze tr			stati	lS	of t	he	co	m	pany.	
CO	PO1	PO2	DO3		DO5				D	0	D	710		<b>DO11</b>	<b>PO12</b>
CO1	<b>FO1</b>	<b>г02</b> З	<b>FU3</b>	FOT	FUJ	FUU	FUI	FU8	-	09	Г	510		FOII	FU12
$CO^2$	3	3	0						+		-		_	3	
CO3	3	3	3						-					3	
CO4	3	3	3											J	
CO5	3	3	3												
CO6	3	3												3	
					Assess	ment	Patter	n							
				Conti	i <b>nuou</b> s	s Asse	ssmen	t Too	ols			En	hd	Semes	er
Blo	om's (	Catego	ory	Tes	t1	Tes	st2	Othe tools	er S			E	xa	minati	on
Remer	nber			✓		V	/	~						<b>v</b>	
Under	rstand			~		V	/	~						~	
Apply				~		V	/	~						~	
Analys	se							~							
Evalu	ate							~							
Create	<u>)</u>							~							

## Mark Distribution of CIA

Course Structur e [L-T-P- J]	Attendance	Th			
		Assignment	Test-1	Test-2	Total Mark s
3-0-0-0	5	15	10	10	40

Total Mark distribution								
Total Marks		CIA (Marks)	ESE (Marks)	<b>ESE Duration</b>				
100		40	60 3		3 HOURS			
End Semester Examination [ESE]: Pattern								
PATTERN		PART A	PART B		ESE Marks			
PATTERN 1	10 , eac ma Ma =20	Questions th questio arries 2 .rks rks: (2x10 ) marks)	2 questions will be from each module, out of wh question should answered. Each que can have a maximum sub divisions. Each question carri marks. Marks: (5x8 marks) Time: 3 hours	given nich 1 be estion of 2 es 8 = 40	60			
	Tot	al Marks: 20	Total Marks: [5x8 = 40 marks]					

#### SYLLABUS

**MODULE I** : Equivalence and cost comparisons

Equivalence and cost comparisons:- Time value of money and equivalence, equations used in economic analysis, compound interest and continuous interest, unacost, capitalized cost, cost comparison with equal and unequal duration of service life, depreciation and taxes, nature of depreciation, methods of determining depreciation, straight line, declining balances, sum of years digits and sinking fund.

**MODULE II** : Cost estimation

Cost Estimation: Cost indices, material cost indices, labour cost indices, William's six tenth factor, location index, types of cost estimates:- order of magnitude estimate, study estimate, preliminary estimate, definitive estimate, detailed estimate, techniques of cost estimates: - conference techniques, comparison techniques

graphic relationship, tabular relationship, unit rate techniques, lang factor method.

hand factor method. Chilton method. miller method. Peter's and Timmerhaus ratio

factor method, Items for capital cost estimates, product cost estimates, direct production cost, administration expenses, items for total product cost estimates, elements of complete costs, start up costs.

**MODULE III** : Profitability analysis

Profitability analysis, mathematical methods for profitability evaluation, payout time, payout time with interest, return on average investment, Return on original investment, net present value, net present value index, DCF rate of return,

incremental analysis.

**MODULE IV** : Breakeven and minimum cost analysis

Breakeven and minimum cost analysis, variable cost and fixed cost,

Break even analysis, economic production chart for 100% capacity, above 100% capacity and

dumping, non-linear economic production chart, Inflation, unaburden. **MODULE V** : Principles of accounting

Principles of accounting, accounting definition, trial balance, profit and loss

accounts, balance sheet, financial ratios related to balance sheet and profit and loss account, canons of ethics of engineers.

#### Text books

- 1. Jelen F.C., Cost and Optimisation Engineering, McGraw Hill
- 2. Peters & Timmerhaus, Plant Design & Economics for Chemical Engineering, McGraw Hill

#### **Reference books**

- 1. Davies G.S., Process Engineering Economics, Chem. Eng. Ed. Dev. Centre, IIT Madras
- 2. Schweyer, Process Engineering Economics, McGraw Hill
- 3. Tyler, Chemical Engineering Cost Estimation
- 4. Aries & Newton, Chemical Engineering & Cost Estimation
- 5. Happel, Chemical Process Economics, Marcel Decker

## COUDER CONTENTS AND I FOTUDE SOUPDILLE

COURSE CONTENTS AND LECTURE SCHEDULE						
No		No. of				
110.		Hours				
MODULE 1 (8 hours)						
1.1	Time value of money and equivalence	1				
-----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---				
1.2	Equations used in economic analysis, compound interest and	1				
	continuous interest					
1.3	Unacost, capitalized cost	1				
1.4	Cost comparison with equal and unequal duration of service life	1				
1.5	Cost comparison with equal and unequal duration of service life	1				
1.6	Depreciation and taxes, nature of depreciation	1				
1.7	Methods of determining depreciation, straight line, declining balances	1				
1.8	Sum of years digits and sinking fund methods	1				
	MODULE II (8 hours)					
2.1	Cost indices, material cost indices, labour cost indices,	1				
2.2	Cost indices, material cost indices, labour cost indices, William's six tenth factor, location index	1				
2.3	Types of cost estimates:- order of magnitude estimate, study estimate, preliminary estimate, definitive estimate, detailed estimate	1				
2.4	Techniques of cost estimates:- conference techniques, comparison techniques graphic relationship, tabular relationship, unit rate techniques, lang factor method, hand factor method, Chilton method, miller method, Peter's and Timmerhaus ratio factor method	1				
2.5	Techniques of cost estimates:- conference techniques, comparison techniques graphic relationship, tabular relationship, unit rate techniques, lang factor method, hand factor method, Chilton method, miller method,	1				

	Peter's and Timmerhaus ratio factor method	
	Techniques of cost estimates:- conference techniques,	
	comparison techniques graphic relationship, tabular	
2.6	relationship, unit rate techniques, lang factor method,	1
	hand factor method, Chilton method, miller method,	
	Peter's and	
	Timmerhaus ratio factor method	
2.7	direct	1
	production cost, administration expenses	
2.8	complete	1
	costs - start up costs	
	MODULE III (6 hours)	-
3.1	Mathematical methods for profitability evaluation, payout	1
	time, payout time with interest	
3.2	Mathematical methods for profitability evaluation, payout	1
	time, payout time with interest	
3.3	Return on average investment, Return on original investment	1
3.4	Net present value, net present value index	1
3.5	DCF rate of return	1
3.6	Incremental analysis	1
	MODULE IV (6 hours)	
4.1	Variable cost and fixed cost	1
4.2	Break even analysis	1
4.3	Economic production chart for $100\%$ capacity, above $100\%$	1
	capacity and dumping	

4.4	Economic production chart for 100% capacity, above $100\%$	1		
	capacity and dumping			
4.5	Non-linear economic production chart 1			
4.6	Inflation, unaburden	1		
	MODULE V (8 hours)	1		
5.1	Accounting definition, trial balance	1		
5.2	Accounting definition, trial balance	1		
5.3	Profit and loss accounts	1		
5.4	Profit and loss accounts	1		
5.5	Balance sheet	1		
5.6	Balance sheet	1		
5.7	Financial ratios related to balance sheet and profit and loss	1		
	account			
5.8	Canons of ethics of engineers	1		
	CO Assessment Sample Questions			
1	A heat exchanger costs Rs.1, 25,000 and salvage valu after 9 years. Operating cost is 10,000/ A s exchanger cost 2, 30,000/- with an annual operat 25,000/- and salvage value of 20,000/- lasts 15 years. Which one is economical?	e is 5,000/- imilar heat ting cost of		
2	Explain any two methods for calculating depreciation.			
3	Explain order of magnitude and study estimates for cost	estimation.		
4	Discuss the mathematical criteria used for profitability	analysis.		
5	If price/unit in Rs. is (1000-D/5), where D is the annu the total	al demand,		
	<ul><li>cost per year can be approximated as (1000+2D2). Dete</li><li>value of D that maximizes the profit.</li></ul>	ermine the		

6	Explain the process of finding gross profit and net profit from profit and
	loss account.

24M0	ст50	C	ONSTI	TUTIC	ON OF	INDIA	L	Т	P	۔ م	S 3	C	Int	Year o roduc 2024	f tion
6 Prea Cons	<b>Treamble:</b> To familiarize the students with key elements of the Indian constitution. The course covers the goals and policies framed under the onstitution for the national well- being. It will enable students to														
demo func	onstra tionin	ate hov g unde	w vibr er it.	ant is	our o	constitu	tion	ı a	nd	tl	he	va	rious i	nstitu	tions
Prere Cours	quisit e Out	e: Nil comes	: After	the c	omplet	tion of t	ne c	cou	rse	e tl	he	stu	dent w	vill be	able
to	<u> </u>	• . •				<b>CT</b> 1.			. •		•				
$\begin{array}{c} \text{CO} \\ 1 \end{array}$	Explain the basic postulates of Indian Constitution and its growth trajectory.														
CO	Evaluate the human rights conditions and the moral standards of														
2	the Indian constitution.														
CO	Anal	yze th	ie inte	rdeper	ndence	e of go	veri	nar	ice	r	neo	cha	nisms	throu	ıgh
3	legis	lation,													
	exec	utive a	ind juc	licial a	dmini	stration	•								
CO	Evaluate the functioning of state governments in India in view of														
4	dece of at	ntraliza ithority	ation y and j	partici	patory	governa	nce	•							
CO	Asse	ss the	effectiv	veness	of div	rision of	pov	ver	be	etw	ree	n C	entre a	and St	ates
5	in In	dia.													
					<b>CO</b> -	PO MAP	PINO	<b>G</b>							
СО	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	PO7	•	PO	8	P	09	PO10	PO11	PO12
CO 1															
CO 2															
CO 3															
CO 4															
CO 5															

Assessment	Pattern
------------	---------

Blacm's Cotomer	Continuou Tools	s Assessn	nent	End
Bloom's Category	Test1	Test2	Other tools	Semester Examinatio n
Remember				
Understand				
Apply				
Analyze				
Evaluate				
Create				

		Mar	k Dist	tribution o	of CIA		
Course				Tł	Total		
Structur		Attendan	As	ssignment	Test-1	Test-2	Mark
е [L-1- Р-J]		CE		_			S
3-0-0-0		5		15	10	10	40
		Tota	al Ma	rks distrib	ution		
Total Ma	rks	CIA (Ma	rks)	ESE (	Marks)	ESE	Duration
100	100 40 60 3 Hrs		Hrs				
	E	nd Semeste	er Exa	mination	[ESE]: Pat	tern	
PATTERN		PAR	ГА		PART B		ESE Marks
PATTERN 1	10 que ma Ma ma	Questions, e estion carries rks rks: (2x10 =2 rks)	each s 2 20	2 quest from ea which be a question maximu division Each q marks. marks) Time: 3	ions will ch module 1 question answered. n can m of s. juestion c Marks: (5 hours	be given e, out of n should Each have a 2 sub- arries 8 x8 = 40	60
		Total Marks	: 20	Total M marks]	arks: [5x8	= 40	

## SYLLABUS

## **MODULE I: Introduction of the Indian Constitution**

Definition of constitution, historical background, salient features of the Indian constitution. Preamble of the constitution, union and its territory. Meaning of citizenship,

types, termination of citizenship.

## MODULE II: Fundamental Rights and Duties

Definition of state, fundamental rights, general nature, classification, right to equality, right to freedom, right against exploitation. Right to freedom of religion, cultural and educational rights, right to constitutional remedies, Protection in respect of conviction for offences. Directive principles of state policy, classification of directives, fundamental duties.

## MODULE III: Union executive and Parliament

The Union executive, The President, the Vice President, the Council of Ministers, the Prime Minister, Attorney-General, functions. The Parliament, composition, Rajya Sabha, Lok Sabha, qualification and disqualification of membership, functions of Parliament.

Union judiciary, the Supreme court, jurisdiction, appeal by special leave. MODULE IV: State Executive and State legislature The State executive, the Governor, the Council of Ministers, the Chief Minister, Advocate general, Union territories. The state legislature, composition, qualification and disqualification of membership, functions. The State Judiciary, the High court, jurisdiction, writ jurisdiction. Local government-Panchayat raj system- with special

reference to  $73^{rd}$  and  $74^{th}$  amendment.

## **MODULE V: Governance and Constitution**

Relations between the Union and the States, legislative relation, administrative relation,

financial relations, Inter State council, finance commission. Emergency provision, freedom of trade and commerce. Comptroller and Auditor General of India, public

services, public service commission, Administrative Tribunals.

Amendment of

## the

constitution-meaning, procedure and limitations. Election provisions and electoral process.

## Textbooks

- 1. D.D.Basu, Introduction to the constitution of India, LexisNexis, New Delhi,25e,2021
- 2. P M Bhakshi, The Constitution of India, Universal Law, 14e ,2017
- 3. M.V. Pylee, "Introduction to the Constitution of India", 4th Edition, Vikas publication, 2005.
- 4. K. Sharma, Introduction to the Constitution of India, Prentice Hall of India, New

Delhi, 2002.

## **Reference books**

- 1. Granville Austin, 2000. The Indian Constitution: Cornerstone of a Nation. Melbourne: Oxford University Press.
- 2. Merunandan, "Multiple Choice Questions on Constitution of India" ,  $2^{\rm nd}$  Edition, Meraga publication, 2017
- 3. D.C. Gupta, Indian Government and Politics, Vikas publishing House, New Delhi.

	COURSE CONTENTS AND LECTURE SCHEDULI	£
No.		No. of Hours 34
	MODULE 1 (4 Hours)	
1.1	Definition of Constitution- Historical back-ground	1
1.2	Salient features of the Constitution	1
1.3	Preamble of the Constitution-Union and its territory.	1
1.4	Meaning of Citizenship-types- termination of citizenship	1
	MODULE II (8 Hours)	
2.1	Definition of state, fundamental rights,	1
2.2	General nature, classification, right to equality.	1
2.3	Right to freedom, right against exploitation.	1
2.4	Right to freedom of religion.	1
2.5	Cultural and educational rights, right to constitutional	1

	remedies	
2.6	Protection in respect of conviction for offences.	1
2.7	Directive principles of state policy,	1
2.8	Classification of directives, fundamental duties.	1
	<b>MODULE III (8 Hours)</b>	
3.1	The Union executive, The President.	1
3.2	The Union executive, The Vice President.	1
3.3	The council of ministers, the Prime minister, Attorney - General,	1
34	The Parliament composition Raiva Sabha Lok Sabha	1
3.5	Qualification and disqualification of membership	1
3.6	Functions of parliament	1
3.7	Union judiciary, the Supreme court	1
3.8	Jurisdiction appeal by special leave	1
5.0	MODILE IV (7 Hours)	1
1 1	The state executive the Coverner, the council of	1
4.1	ministers.	I
4.2	The Chief Minister, advocate general, union territories.	1
4.3	The state Legislature, composition,	1
4.4	Qualification and disqualification of membership, functions.	1
4.5	The state judiciary, the high court,	1
4.6	Jurisdiction, writ jurisdiction.	1
4.7	Local government, Panchayat raj system-with special reference to 73 rd and 74 th amendment.	1
	MODULE V (7 Hours)	
5.1	Relation between the union and the states, legislative relation,	1
5.0	administrative relation.	1
5.4	commission.	1
5.3	Emergency provision, freedom of trade and commerce.	1
5.4	Comptroller and Auditor General of India, public services,	1
5.5	Public service commission, administrative tribunals.	1
5.6	Amendment of the constitution-meaning, procedure and	1
57	Election provisions and electoral process	1
0.7	Election provisions and electoral process.	T

	CO Assessment Questions					
CO1	a. Examine the salient features of the Indian constitution.					
COI	b. "Secularism is the foundation of democracy". Explain					
CO2	"The constitution has ensured certain rights to the					
002	minorities under					
	Article 30"- Examine.					

CO3	Discuss the various ways Parliament ensures accountability of the executive.
	Evaluate the impact of the 73 rd and 74 th constitutional
CO4	amendments on the decentralization of power and the functioning of
	panchayats and municipalities
	in India.
CO5	Describe the division of powers between Central and state government
	in India.

24ES	T508	EN	ERGŸ	∕&EN	VIRON	MENT	AL	L	Т	Р	J	S	С	Y Intro	ear of oduction
				AUDIT					0	0	0	2	2	2	024
Pream	Preamble: The objective of the course is to understand energy scenario and														
genera	general														
aspects of energy audit and environmental audit. This course is expected															
to equip students with the knowledge and skills needed to conduct															
thorou	thorough assessments of energy consumption and environmental impact														
within.	i orga	anıza	tions	. As	the g	lobal	com	ım		ty g	raŗ	ple		with r	pressing
enviro	nmer	ital c	halle	nges	and se	eeks si	usta	111	able	e sol	uti	ons	s, tr	ie imp	ortance
or ene	rgy ar		viron	ment	araud	iting n	as n	lev	ver b	een	mo	re	sigr	iincan	t.
Cours			oo.∧ft	orthe		lation	of th		0011#		20.0	. + 1 1 /	lon	+	a abla tar
		oribe	the	trend	te on	energ					10 3	on			
COI	cons	ervat	ion	uuu	15 011	chicig	y t	150	-, p	Unch	20	an	uc	nergy	
	stra	tegies	ador	oted i	n India	A									
CO2	Dese	cribe	the sa	alient	featur	es of er	nerg	v	cons	serva	tio	n a	ct a	nd rela	ated
	polic	cies													
<b>CO3</b>	Dese	cribe	gener	al asp	pects o	f energ	y at	ıd	it an	d pr	epa	re	ene	rgy au	dit
	repo	rts.					_								
CO4	Dese	cribe	vario	us coi	ncepts	of Env	viror	nm	ienta	ıl Im	pao	ct A	sse	ssmen	it(EIA)
CO5	Prep	are I	EIA re	port f	or gett	ing En	viro	nr	ment	al cl	ear	and	ce		
					CO	- PO M	APP	IN	G						
CO	<b>PO1</b>	PO	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	PO	7	<b>PO8</b>	P09	F	01	0	PO11	PO12
CO1	2	4				2		_							2
CO1	2					2		_							2
$CO_2$	2					2		_							2
CO3						2	0						-+		2
004	2					2	2					0			2
005	2				•	2	2					2			2
				<b>N</b>	Asses	ssment	Pat		ern						
<b>D1</b> .		- 4		Conti Poole	nuous	Assess	men	lt		F	. 1 .	•		<b>D</b> -	
RIOO	m's C	atego	ory 🔄	10018						En		sem	iest	er Exa	mination

<b>Bloom's Category</b>	Tools			<b>End Semester Examination</b>		
	Test1	Test 2	Other tools			
Remember	<b>v</b>	<b>v</b>	<b>v</b>			
Understand	<b>v</b>	<b>v</b>	<b>v</b>			
Apply	<b>v</b>	<b>v</b>	<b>v</b>			
Analyse			~			
Evaluate			<b>v</b>			
Create			~			
	Mark I	Distributi	on of CIA			

		Theo	ory [L- T]		Toto1
23E <b>Sourc</b> se	Attendance	Assignment	Test-1	Test-2	Totai Mark
Structure [L-T-P-					S
2-0-0-0	5	35	30	30	100
2000	Ū	SYLLABUS	00	00	100
<b>MODULE I</b> : Ener	ev Scenario				
Introduction r	rimary and	secondary ener	rov comr	nercial a	nd non-
commercial ene	ergy Renewah	le and non-ren	ewahle en	erov Indi	a enerov
scenario, sector	r wise energy	consumption i	n India	energy ne	eds of a
growing economy	v. Integrated en	erøv			cub of u
policy. Long ter	m. Energy sc	enario of India.	energy c	onservatio	n and its
importance.		,			
MODULE II: Ener	rgy Conservation	n act and related p	olicies		
Industrial Heatir	ng furnaces, Sa	lient feature of e	nergy Con	servation A	ct 2001
and The					
Energy Conserva	ation (Amendm	ent) Act 2010, se	chemes of	BEE unde	er the
energy Conserva	tion Act-2001				
MODULE III: Ener	rgy management	and audit			
Energy Audit de	efinition, Need	for energy audi	t, Types o	f energy a	udit and
approach, Un	derstanding	energy costs,	Bench	marking,	Energy
performance, M	atching energy	v usage to requir	rements, I	Maximizing	g system
efficiencies, Op	timising input	t energy require	ements, l	Fuels and	l Energy
substitution, Ins	struments and	metering for end	ergy		
audit, Bureau of	Energy Efficien	ncy regulations.			
MODULE IV: Con	cepts of Environ	imental Impact As	sessment		
Concepts of En	vironmentallm	pact Assessmen	t: Environ	ment;	
Enviro	nmental	at Amelania, Dua	-:	-1 Tura una a 4	
Impacts; Enviro	nmental Impa	ct Analysis; Env	/ironment	al impact	anol Dont
Assessment And		ai impact Statem	lent; EIA-	AS AII IIIte	grai Part
MODIILE V Envi	ronmental Audit	F			
Environmental	Audit: Defini	tion: Objectives	Scope	Coverage	
notification Sen	tember 2006 c	and amendments	s, Scope, s: Categor	ization of	projects
Procedure for g	etting environ	mental clearan	s. Categoi ce Public	narticin	ation in
environmental (	decision-makir				
process Case et	udies on EIA fo	^ι δ r Industries and	Infrastruc	ture proiec	ts
process. Case st			mustiut	care projec	

Text	book							
1. Er Gı	nvironmental auditing: Fundamentals and techniques1987 by J reeno	. Ladd						
2. Ro en	2. Robert Ristirer and Jack P. Kraushaar, "Energy and the environment", Willey, 2005.							
3. Ge Er	eneral Aspects of Energy Management and Energy Audit, Bure	eau of						
4. Er Mo	<ul> <li>4. Environmental Impact Analysis Handbook – by Rau Whooten; McGraw Hill</li> <li>publications</li> </ul>							
Refer	ence books							
1. Mu 2. Sr 3. Tu bo	<ol> <li>Murphy, W. R., Energy Management, Elsevier, 2007.</li> <li>Smith, C. B., Parmenter K., Energy Management Principles, Pergamon, 1981</li> <li>Turner, W. C., Doty, S. and Truner, W. C., Energy Management Hand book, 7th edition, Fairmont Press, 2009.</li> </ol>							
4. Er UI	nergy and the Challenge of Sustainability, World energy assessm NDP New York, 2004.	ent,						
5. Ak an	5. AKN Reddy, RH Williams, TB Johansson, Energy after Rio, Prospects and							
ch	allenges, UNDP, United Nations Publications, New York, 1997							
	COURSE CONTENTS AND LECTURE SCHEDULE							
No.		No. of Hours						
	MODULE 1 (4 hours)							
1.1	Introduction, primary and secondary energy, commercial and non-commercial energy	1						
1.2	Renewable and non-renewable energy India energy scenario, sector wise energy consumption in India	1						
1.3	energy needs of a growing economy, Integrated energy policy, Long term.	1						
1.4	Energy scenario of India, energy conservation and its importance.	1						
	MODULE II (4 hours)							
2.1	Industrial Heating furnaces, Salient feature of energy Conservation Act 2001	1						
2.2	Industrial Heating furnaces, Salient feature of energy Conservation Act 2001	1						
2.3	The Energy Conservation (Amendment) Act 2010,	1						

2.4	schemes of BEE under the energy Conservation Act-2001	1
	MODULE III (6 hours)	
3.1	Energy Audit definition, Need for energy audit, Types of energy audit and approach	1
3.2	Energy Audit definition, Need for energy audit, Types of energy audit and approach	1
3.3	Understanding energy costs, Benchmarking, Energy performance	1
3.4	Matching energy usage to requirements, Maximizing system efficiencies	1
3.5	Optimising input energy requirements, Fuels and Energy substitution	1
3.6	Instruments and metering for energy audit, Bureau of Energy, Efficiency regulations.	1
	MODULE IV (4 hours)	
4.1	Concepts of Environmental Impact Assessment : Environment; Environmental Impacts;	1
4.2	Environmental Impact Analysis	1
4.3	Environmental Impact Assessment And Environmental Impact statement	1
4.4	EIA- as An Integral Part of The Planning Process	1
	MODULE V (6 hours)	
5.1	Environmental Audit: Definition; Objectives; Scope, Coverage	1
5.2	EIA notification September 2006 and amendments	1
5.3	Categorization of projects, Procedure for getting environmental clearance.	1
5.4	Public participation in environmental decision making process.	1
5.5	Case studies on EIA for Industries and Infrastructure projects	1

5.6	Case studies on EIA for Industries and Infrastructure	1
	projects	

	CO Assessment Sample Questions								
1	Explain the difference between energy conservation and energy efficiency with								
	an example.								
2	Explain five important features of energy conservation act 2001.								
3	Explain the major difference between primary energy audit and detailed energy audit.								
4	Write a note on Environmental Impact analysis.								
5	Describe the procedure to get environmental clearance for a project.								

# FIFTH SEMESTER HONOUR

24CHH509		ADVANCED HEAT						L	, <b>T</b>	P	J	S		Int	Year of roduction
2.0111	ANSFER					• 0	0	0	4	4		2024			
<b>Preamble</b> : The course covers topics such as one-dimensional steady state conduction, multidimensional conduction, unsteady state conduction, heat transfer through extended surfaces, convective and radiative heat transport analysis, heat exchanger network design.															
Prerequisite: Nil															
Course Ou	itcom	<b>es</b> : After t	he co	omple	etion	of t	he co	our	se tł	ne s	tu	de	nt	will be	able to
CO1	Appl	y the co	ncer	ots d	of co	ondu	ictio	n l	heat	tr	an	sf	er	to the	design of
	heat-	transfer e	quip	men	t and	l solv	ve re	late	ed er	ıgin	lee	rin	lg 1	problem	ıs.
CO2	Expl	ain the co	once	pt ar	nd ap	oplic	atio	ns o	of he	at	tra	ns	sfei	throu	gh extended
	surfa	aces													
CO3	Expla	ain the ph	lenor	neno	n of	unst	teady	y st	ate	con	du	cti	on	of vari	ous types.
CO4	Appl	y the con	lcept	s of	conv	vecti	on a	nd	rad	iati	ion	ı h	ea	t trans	fer to solve
	comp	olex heat t	rans	fer p	roble	ems.									
CO5	Desig	gn a heat	exch	ange	r net	worl	ς								
				C	0 - P	ΟМ	APP	ING	ŕ						
СО	<b>PO1</b>	PO2	PO 3	РО 4	РО 5	PO 6	<b>PO</b> 7	F	<b>°O</b> 8	P S	0 )	РС 0	)1	PO1	.1 PO12
CO1	3	2	2												2
CO2	3														2
CO3	3														2
CO4	3	2	2												2
CO5	3	2	3	2											2
				Ass	essn	ıent	Pat	te	n						
				_	Co	onti	nuo	us						~	
Bloom's (	Catego	ory		A		ssme		1.00	ols hor	_				End Se	emester
				res	τι	res	τ 4	to	ner Male					L'Aam.	mation
Remembe	er			~			/		V13	+				~	
Understand				<b>v</b>		l	/		V					V	
Apply				V		l	/		~	+				~	
Analyse									~	+					
Evaluate									~						
Create									<b>v</b>						

## Mark Distribution of CIA

Course Stru	cture	A 4 4	The		Total			
[L-T-P-J]		Attendance	Assignment	Test-1	Test	:-2	Mark s	
4-0-0-0		5	15	10	10	)	40	
		Total N	lark distributi	ion				
Total Ma	ırks	CIA (Marks)	ESE (Ma	arks)	E	SE Dı	iration	
100		40	60			3 HO	URS	
End Seme	ester E	xamination [ESE	]: Pattern					
PATTERN		PART A	PA	RT B		ESI	E Marks	
PATTERN 1	10 Qu questi marks Marks marks	estions, each on carries 2 s :: (2x10 =20 s)	2 questions w each module, question shou Each question maximum of 2 Each question marks. Marks: (5x8 = 4 Time: 3 hours	n from nich 1 wered. ave a sions. es 8	60			
	Total	Marks: 20	Total Marks: [5	5x8 = 40 m	arks]			
		SY	LLABUS					
MODULE I	Cond	uction heat trans	sfer (11 hours)					
<b>MODULE I</b> : Conduction heat transfer (11 hours) Review of conduction convection and thermal radiation fundamentals. Thermal conductivity. Temperature and pressure dependence of thermal conductivity. Thermal conductivity of solids, liquids and gases. Combined mechanisms of heat transfer. The general differential equation for energy transfer. Steady state one-dimensional conduction with and without heat generation.								
MODULE II	: Heat	transfer from ext	ended surfaces	(12 hours	)			
Heat transfer from extended surfaces. Rectangular plate fin of uniform cross section: Long fins, Fin with insulated end, Fins with convection off the end. Pin fin (spine) of uniform cross section. Efficiency and effectiveness of fins. Error estimation in temperature measurement. Multi-dimensional heat conduction - Conduction in two dimensional systems: Analytical solution to a thin, infinitely long								

rectangular plate without any heat source.

**MODULE III** : Unsteady state conduction (9 hours)

Unsteady state conduction. Lumped parameter analysis; Systems with negligible internal resistance. Response time of a temperature measuring instrument. Systems with negligible surface resistance. Heat flow in an infinitely thick plate (Semi-infinite body). Systems with finite surface and internal resistance. Chart

solutions of transient heat conduction problems.

**MODULE IV**: Convection and radiation heat transfer (9 hours)

Convection heat transfer. The convective heat transfer coefficient. The basic

equations: continuity equation, the momentum equation and the energy equation. Exact analysis of the laminar boundary layer. Approximate analysis of the thermal boundary layer. Radiation heat transfer: Nature of radiation. Thermal radiation. The intensity of radiation. Radiant heat transfer between black bodies. Radiant heat transfer between gray surfaces. Radiation from gases. The radiation heat transfer

coefficient.

**MODULE V** : Heat exchanger network design (7 hours)

Heat Exchanger Network Design - the difference between streams and branches, the pinch design method, Grid diagram, Stream splitting design for single pinch networks.

## **Text books**

- 1. Welty J.R et al., Fundamentals of Momentum, Heat and Mass Transfer, John Wiley & Sons
- 2. Hollman J.P., Heat Transfer, McGraw Hill
- 3. Dutta B.K., Heat Transfer: Principles and Applications, Prentice Hall India
- 4. Robin Smith, Chemical Process Design and Integration, John Wiley and Sons. Ltd., New Delhi, 2005.

## **Reference books**

- 1. Bird et al., Transport Phenomena, John Wiley & Sons.
- 2. Foust A.S et al., Principles of Unit Operations, John Wiley & Sons.
- McCabe W.L., Smith J.C. & Harriott P., Unit Operations in Chemical Engineering, McGraw Hill
   Coulson J.M. & Richardson J.F., Chemical Engineering, Vol. I and II,
- ELBS, Pergamon Press
- 5. Geankopolis C J, Transport Processes and Separation Process Principles, Prentice Hall of India, 4th Edition, Eastern Economy Edition (2004)
- 6. Incropera F P and DeWitt D P, Introduction to Heat Transfer, 2nd Ed John Wiley New York (1996).
- 7. M.Necati. Özizik, Heat transfer A Basic Approach, McGraw-Hill College (1985) 8. Kern D.Q., Process Heat Transfer, McGraw Hill

	COURSE CONTENTS AND LECTURE SCHEDULE								
No.		No. of Hours							
1.1	Review of conduction convection and thermal radiation fundamentals.	1							
1.2	Thermal conductivity. Temperature and pressure dependence of thermal conductivity. Thermal conductivity of solids, liquids and gases.	1							

1.3	Thermal conductivity. Temperature and pressure dependence of thermal conductivity. Thermal conductivity of solids, liquids and gases.	1
1.4	Combined mechanisms of heat transfer.	1
1.5	The general differential equation for energy transfer.	1
1.6	The general differential equation for energy transfer.	1
1.7	Steady state one-dimensional conduction with and without heat generation	1
1.8	Steady state one-dimensional conduction with and without heat generation	1
1.9	Steady state one-dimensional conduction with and without heat generation	1
1.10	Steady state one-dimensional conduction with and without heat generation	1
1.11	Steady state one-dimensional conduction with and without heat generation	1
	MODULE II	
2.1	Heat transfer from extended surfaces. Rectangular plate fin of uniform cross section: Long fins, Fin with insulated end, Fins with convection off the end.	1
2.2	Heat transfer from extended surfaces. Rectangular plate fin of uniform cross section: Long fins, Fin with insulated end, Fins with convection off the end.	1
2.3	Pin fin (spine) of uniform cross section.	1
2.4	Efficiency and effectiveness of fins.	1
2.5	Efficiency and effectiveness of fins.	1
2.6	Error estimation in temperature measurement.	1
2.7	Multi-dimensional heat conduction: Two- and three-dimensional systems (introduction only). Numerical solutions.	1
2.8	Multi-dimensional heat conduction: Two- and three-dimensional systems (introduction only). Numerical solutions.	1

0.0	Multi-dimensional heat conduction: Two- and	1
2.9	three-dimensional systems (introduction only). Numerical	
0.10	Nulti dimensional best conduction: Two and	1
2.10	Multi-dimensional neat conduction: Two- and	-
	three-dimensional systems (introduction only). Numerical	
	Multi-dimensional heat conduction: Two- and	1
2.11	three-dimensional systems (introduction only). Numerical	L
	solutions.	
	Multi-dimensional heat conduction: Two- and	1
2.12	three-dimensional systems (introduction only). Numerical	
	solutions.	
		-
3.1	Systems with negligible internal resistance	1
3.2	Unsteady state conduction. Lumped parameter analysis; Systems with negligible internal resistance	1
3.3	Unsteady state conduction. Lumped parameter analysis;	1
		1
3.4	Response time of a temperature measuring instrument.	L
3.5	Response time of a temperature measuring instrument.	1
3.6	Systems with negligible surface resistance.	1
37	Heat flow in an infinitely thick plate (Semi-infinite body).	1
0.1	Systems with finite surface and internal resistance.	
3.8	Heat flow in an infinitely thick plate (Semi-infinite body). Systems with finite surface and internal resistance.	1
3.9	Chart solutions of transient heat conduction problems.	1
	MODULE IV	
4.1	Convection heat transfer. The convective heat transfer coefficient.	1
4.2	The basic equations: Continuity equation, the momentum equation and the energy equation.	1
4.3	Exact analysis of the laminar boundary layer. Approximate analysis of the thermal boundary layer.	1
4.4	Exact analysis of the laminar boundary layer. Approximate analysis of the thermal boundary layer.	1

4.5	Radiation heat transfer: Nature of radiation. Thermal radiation. The intensity of radiation.	1
4.6	Radiation heat transfer: Nature of radiation. Thermal radiation. The intensity of radiation.	1
4.7	Radiant heat transfer between black bodies. Radiant heat transfer between gray surfaces.	1
4.8	Radiant heat transfer between black bodies. Radiant heat transfer between gray surfaces	1
4.9	Radiation from gases. The radiation heat transfer coefficient.	1
	MODULE V	
5.1	Heat Exchanger Network Design - the difference between streams and branches	1
5.2	Heat Exchanger Network Design - the difference between streams and branches	1
5.3	The pinch design method	1
5.4	The pinch design method	1
5.5	Grid diagram	1
5.6	Grid diagram	1
5.7	Stream splitting design for single pinch networks.	1

CO	Assessment	sample	questions
			440000000000000000000000000000000000000

1	A thick-walled tube of stainless steel having a $k = 21.63 \text{ W/mK}$ with dimensions of 0.0254 ID and 0.0508 OD is covered with a 0.0254 m thick layer of insulation ( $k = 0.2423 \text{ W/mK}$ ). The inside wall temperature of the pipe is 811 K and the outside surface of insulation is at 310.8 K. For a 0.305 m length of pipe, calculate the heat loss and also the temperature at the interface between the metal and the insulation.
2	Derive the expression for temperature distribution and heat flux for a rectangular fin.
3	Derive the expression for temperature distribution of a solid undergoing transient conduction. Assume negligible internal resistance.

4	Air at 293 K is flowing along a heated plate at 407 K with a velocity of 3 m/s. The plate is 2 m long. The heat transferred from the first 40 cm from the leading edge of the plate is 1450 W. Determine the width of the plate. Data: Properties of air at the mean film temperature of 350 K are: $\rho$ = 0.998 kg/m ³ , v= 20.76*10 ⁻⁶ m ² /s, k = 0.03 W/m.K, Pr = 0.697									
	A problem for ∆Tmin utility and streams. ' given belo	n table analy n = 20°C the d the pinch The process ow. Design a	ysis for part of process require is located at 52 stream data for MER HEN.	a high tempera es 9.2 MW of 1 0 °C for hot st the heat recov	ature process reveals that hot utility, 6.4 MW of cold reams and 500 °C for cold very network problem are					
	Str	ream	Supply	Target	Heat capacity flowrate					
5	No	Туре	temperature (°C)	e (°C)						
	1	Hot	720	320	0.045					
	2	Hot	520	220	0.04					
	3	Cold	300	900	0.043					
	4	Cold	200	550	0.02					

24CF	H510		HNOLOGIES FOR CLEAN RENEWABLE ENERGY					Т	Р	J	S	С	Yea Introd	ır of ductio	
2101		-		PRC	DUCI	TION								1	n
							4	0	0	0	4	4	20	)24	
Preamb	ole: The	cou	rse d	leals v	with tl	he pro	ductio	n o	f ei	nerg	gy f	ron	n d	lifferen	t fossil
fuels						_									
through	n cleane	er ro	utes	as we	ell as f	from r	enewa	ble	res	oui	ces	s. It	is is	intend	led to
help tl	he stu	dent	s ke	eep t	heir 1	knowl	edge	up	gra	dec	l w	vith	ı t	he cu	ırrent
though	ts and	new	ver t	echno	ology	option	is alor	ng v	vitl	n tł	neir	a	dva	inces i	n the
field of	f the u	tiliza	ation	of d	ifferer	nt typ	es of	ene	ergy	y re	eso	urc	es	for cl	eaner
energy	produc	tion	•												
Prerequ	isite: N	il													
Course	Outco	mes	Afte	r the o	comple	etion c	of the c	cour	se	the	stu	Ide	nt י	will be	able to
CO 1	Descr	ibe ti	he ac	lvance	ed clea	an rou	tes for	en en	erg	y pı	odu	uct	ion	from o	coal.
CO 2	Evalua petrol	ate v eum.	ariou	ıs me	thods	of clea	an ene	rgy	pro	odu	ctic	n f	ror	n crud	е
CO 3	Expla	in th	e en	ergy p	roduc	tion v	ia sola	r te	chr	ιiqι	ies.				
CO 4	Descr	ibe ti	he er	nergy	produ	ction 1	netho	ls v	ia v	vin	d ai	nd	oce	ean sys	tems.
CO 5	Expla geoth resour	in th erma rces.	ne m al	ethod	ls of e	nergy	produ	acti	on	fro	m l	oio	ma	ss and	1
					CO -	PO M/	APPINO	ż							
СО	PO1	PO 2	<b>PO</b> 3	PO4	<b>PO</b> 5	<b>PO6</b>	<b>PO7</b>	P	08	P	<b>)9</b>	PO	10	PO11	PO12
CO 1	3	3													
CO 2	3	3													
CO 3	3	3													
CO 4	3	3													
CO 5	3	3													
					Assess	sment	Patte	rn						-	
				Cont	inuous	s Asse	ssmen	t To	ools	5		Fn	A	Somost	0#
Blooi	n's Cat	egor	У	Tes	t1	Tes	t 2	Oti too	ier ols			E	kar	ninatio	on
Remem	ber			~		V	•	V	/				v	/	
Unders	Understand V V V					/									
Apply				~		V	•	V	/				V	•	
Analyse	<del>)</del>							V	•						
Evalua	te							V	•						
Create								V	/						
				Μ	ark Di	stribu	tion of	CIA	1	1					

Course Stru	cture	Attendence	The	Theory [L- T]						
L-T-P-J	1	Attenuance	Assignment	Test-1	Test-2	Total Marks				
4-0-0-0	C	5	5	10	10	40				
		Tota	l Mark distrib	ution						
Total Ma	arks	CIA (Marks	s) ESE (1	Marks)	E	SE Duration				
100		40	6	50						
End Semest	ter Exa	<u>mination [ESE</u>	]: Pattern							
PATTERN		PART A	F	PART B		ESE Marks				
PATTERN 1	10 Qu questi 2 mar Marks =20 m	estions, each on carries ks : (2x10 arks)	<ul> <li>2 question</li> <li>from</li> <li>each modul</li> <li>question</li> <li>answered. E</li> <li>have a mat</li> <li>divisions.</li> <li>Each questi</li> <li>marks. Mar</li> <li>marks)</li> <li>Time: 3 hou</li> </ul>	s will b e, out of should Each ques ximum of con carries ks: (5x8 = rs	e given which 1 be tion can f 2 sub s 8 = 40	60				
Total Marks: 20			Total Marks marks]	s: [5x8 = 4	0					
			SYLLABUS							
	~1	-								

**MODULE I**: Clean route for energy production from coal (10 hrs)

Clean route for energy production from coal: Pre-treatment of coal-Desulphurization and demineralization. Modification processes: Fluidized bed reactor, super critical boiler and flue gas clean up. Advanced techniques of energy production from coal: Oxy-fuel combustion, chemical looping combustion, gasification, direct liquefaction

and underground coal gasification.

**MODULE II**: Cleaner Routes for Energy Production from Petroleum Crude (10 hrs)

Overview of Petroleum Crude: Composition, Types, and Properties, Environmental Impacts of Conventional Energy Production, Clean Energy production from Petroleum crude: Thermal Depolymerization(TDP),LNG, CNG, Hydrocracking and Hydrotreating

Processes, Gasification for Syngas and Hydrogen Production

# **MODULE III**: Energy production from solar technologies (9 hrs)

Solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, photovoltaic systems, energy plantations, solar energy

application in India

# **MODULE IV**: Ocean and wind systems for energy production (9 hrs)

Ocean wave energy conversion, ocean thermal energy conversion: Open cycle and closed cycle thermal energy conversion system, tidal energy conversion, oscillating air column energy conversion, single basin single and double effect tidal energy conversion systems.

Wind energy, types of windmills, Types of wind rotors, Darrieus rotor and Savanius

rotor, Wind electric power generation, wind power in India, economics of wind farm

**MODULE V**: Energy harnessing methods from biomass and geothermal resources (10 hrs)

Biomass energy resources, Thermo-chemical methods of biomass conversion,

combustion, gasification, pyrolysis, Biochemical methods of biomass conversion: fermentation, anaerobic digestion

Geothermal energy resources: Types geothermal energy deposits, Hydro, geo, Petro

geothermal resources and its harnessing methods. Types of geothermal power plant, working of steam geothermal power plant

## Text books

- 1. Miller Bruce G., Coal Energy Systems, Elsevier Academic Press, Paris 2005
- 2. Rao S. & Parulekar B.B., Energy Technology, Khanna Publishers.
- 3. Twidel, J. and Tony W., Renewable Energy Resources, Second Edition, Taylor & amp; Francis 2006
- 4. Kreith F., Goswami D.Y., Energy Management and Conservation, CRC Press 2008
- Sukhatme S., J Nayak J., Solar Energy: Principles of thermal Collection and Storage, 3 rd Ed., Tata McGrow-Hill Pulishing Company Ltd. 2008
- 6. Mondal P and Dalai A., Sustainable utilization of natural resources, CRC Press
  - 2017

## **Reference books**

- 1. Dr. Prasenjit Mondal, Technologies for clean and renewable energy production, NPTEL course, IIT Kharagpur
- 2. Sukhatme S.P., Solar Energy, Tata McGraw Hill
- 3. Mittal K.M., Non-Conventional Energy Systems, Wheeler Publications
- 4. Venkataswarlu D.I, Chemical Technology, S. Chand
- 5. Pandey G.N., A Text Book on Energy System and Engineering, Vikas Publishing.
- 6. Rai G.D., Non-Conventional Energy Sources, Khanna Publishers.
- 7. S.S.Thipse, Energy conservation and management, Narosa Publishing House

COURSE CONTENTS AND LECTURE SCHEDULE							
No.		No. of Hours					
	MODULE 1						
1.1	Pre-treatment of coal- Desulphurization and demineralizatio n	1					
1.2	Pre-treatment of coal- Desulphurization and demineralizatio n	1					
1.3	Modification processes: Fluidized bed reactor, super critical boiler and flue gas clean up	1					
1.4	Modification processes: Fluidized bed reactor, super critical boiler and flue gas clean up	1					
1.5	Oxy-fuel combustion,	1					
1.6	Chemical looping combustion	1					
1.7	Chemical looping combustion	1					
1.8	Gasification	1					
1.9	Direct liquefaction	1					
1.10	Underground coal gasification	1					
	MODULE II						
2.1	Overview of Petroleum Crude	1					

2.2	Environmental Impacts of Conventional Energy Production	1
2.3	Environmental Impacts of Conventional Energy Production	1
2.4	Thermal Depolymerization (TDP)	1
2.5	LNG	1
2.6	CNG	1
2.7	Hydrocracking	1
2.8	Hydrotreating Processes	1
2.9	Gasification for Syngas	1
2.10	Hydrogen Production	1
	MODULE III	
3.1	Solar thermal systems	1
3.2	flat plate collectors	1
3.3	focusing collectors	1
3.4	Solar water heating, solar cooling	1
3.5	Solar distillation, solar refrigeration, solar dryers	1
3.6	Solar pond, solar thermal power generation,	1
3.7	Photovoltaic systems	1
3.8	Energy plantation	1
3.9	Solar energy application in India	1
	MODULE IV	
4.1	Ocean wave energy conversion	1
4.2	Ocean thermal energy conversion: Open cycle and closed cycle thermal energy conversion system	1
4.3	Ocean thermal energy conversion: Open cycle and closed cycle thermal energy conversion system	1
4.4	Oscillating air column energy conversion, single basin single and double effect tidal energy conversion systems.	1
4.5	Oscillating air column energy conversion, single basin single and double effect tidal energy conversion systems.	1

4.6	Wind energy, types of windmills	1					
4.7	Types of wind rotors, Darrieus rotor and Savanius rotor	1					
4.8	Wind electric power generation	1					
4.9	Wind power in India, economics of wind farm	1					
	MODULE V						
5.1	Thermo-chemical methods of biomass conversion	1					
5.2	Combustion, gasification, pyrolysis	1					
5.3	Biochemical methods of biomass conversion: fermentation, anaerobic digestion	1					
5.4	Biochemical methods of biomass conversion: fermentation, anaerobic digestion	1					
5.5	Biochemical methods of biomass conversion: fermentation, anaerobic digestion	1					
5.6	Types geothermal energy deposits	1					
5.7	Hydro, geo, Petro geothermal resources and its harnessing methods	1					
5.8	Types of geothermal power plant, working of steam geothermal power plant	1					
5.9	Working of steam geothermal power plant	1					
5.10	Working of steam geothermal power plant	1					
	CO Assessment Sample Questions						
1	Explain any three advanced energy production methods f	from coal.					
2	Describe the modes of clean energy production from crud	e petroleum.					
3	Differentiate between flat plate collectors and focusing co	llectors					
4	Discuss the different ocean energy conversion technologies and comment on their future scope						
5	Analyze the process of biomass conversion technologies.						

24CHH511 SOFT COM				PUTING					Т	Р	J	S	С	Ye Intro	ar of duction			
	ſ	гесн	NIQUI	ËS		4 0 0 0 4 4							4	2024				
Prean	nble: ′	This c	ourse	gives a	an int	roduct	ion to	son	ne r	new	v fiel	ds	in s	oft				
compi	computing with its principal components of fuzzy logic, NN, GA and Fuzzy																	
geneti	genetic hybrid systems.																	
Prereq	Prerequisite: Nil																	
Cours	<b>Course Outcomes</b> : After the completion of the course the student will be able to																	
<b>CO</b> 1	Ex	rplain	the co	oncept	s invo	lved in	1 fuzzy	log	ic s	yst	ems	3.						
CO 2	De	esign f	uzzy I	ogic co	ontrol	lers for	r variou	us a	app	lica	tion	ıs						
CO 3	Tr	ain ne	eural	netwo	rks fo	r vario	ous app	olica	atic	ns								
CO 4	Sc	olve op	otimiza	ation p	proble	ms usi	ng Ger	neti	c Al	goi	rithr	ns						
CO 5	Ut	nderst	and t	he con	cepts	of Hyt	orid So	ft c	om	put	ing	te	chnie	ques.				
					CO	- PO M	IAPPIN	G										
CO	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	P	28	F	<b>PO9</b>	P	010	PO11	PO12			
CO 1	3	3		3	3										3			
CO 2	3	3		3	3										3			
CO 3	3	3		3	3										3			
CO 4	3	3		3	3										3			
CO 5	3	3		3	3										3			
					Asse	ssment	Patte	rn										
				Cont	inuou	s Asse	ssment	t To	ols				_					
Bloo	om's C	atego	ory	Tes	t1	Те	st 2	C t	Other tools			End Ser Examin	Examination					
Remer	nber			~		v	/		V					V				
Under	stanc	1		V		v	/		V	•				V				
Apply				V		v	/		V	•				V				
Analys	se								V	•								
Evalu	ate								V	•								
Create	<b>)</b>								V	•								
				Μ	lark D	istribı	ition o	f C	ΙΑ									
							The	ory	, [L-	<b>T</b> ]					- 4 - 1			
Course Att Structure			Att	endan	ce	Assignment		T	Test-1		Test-1			Те	st-2	M	Marks	
4	-0-0-0	)		5		5			10			1	.0		40			

Total Mark distribution									
Total Marks CIA (Marks) ESE (Marks) ESE Duration									
<b>10tal M</b>	CIA (Marks	5)	ESE (Marks)		2 hours				
IUU End Semester	· Fromino	40 tion [FSF]: Dot	torn	00		3 hours			
PATTERN	Semester Examination [ESE]: Pattern       PART A       PART B					ESE Marks			
		stions each	2	questions will be g	LOL Maiks				
PATTERN 1	question carries 2 marks			m ch module, out of wh question should swered. Each quest h have a maximum o b divisions. ch question carries	ich be ion of 2	ich be on f 2 60			
	marks)		Ma	8 marks. urks: (5x8 = 40 marks)					
			Tin	ne: 3 hours					
MODULE I Introductic Relations Cardinality relations-Pr membershi assignment	: Introduc on to of fuzzy coperties p fun- s-fuzzy r	ction to fuzzy lo fuzzy logic relations-ope of fuzzy ctions-Fuzzifio ule base	S ogic : 1 ratio rela catio	YLLABUS (10 hrs.) Fuzzy Sets-Fuzzy ons on Fuzzy Relation tions-Membership fu on-methods of r	set s-Pro incti nem	operations-Fu operties of Fuz ons-features bership valu	uzzy zy of ue		
MODULE II	: Defuzzi	fication (10 hrs	s.)						
Defuzzificat Artificial n Single laye networks	ion-Defu eural ne r feed fo	zzification me tworks. Basi rward networ	etho c co k-M	ds-Fuzzy logic controll oncepts-Neural netwo Iultilayer feed forward	ler (E ork a l net	3lock diagram). architecture- work-Recurre:	nt		
MODULE II.	I: Neutra	I networks (10	hrs.						
Characteristics of Neural networks- Learning methods. Perceptron networks-Back propagation networks-Radial base function network-Hopfield network-Kohonenself-organising maps.									
MODULE I	7 : Funda	mentals of gene	etic	algorithms (10 hrs.)					
Fundamentals of genetic algorithms: Basic concepts-working principle-encoding-different methods-fitness function-reproduction-different methods. Genetic modelling- inheritance-cross over mutation-convergence of genetic algorithm.									
<b>MODULE V</b>	: Hybrid s	systems (8 hrs.	)						

Hybrid systems: Neural network, fuzzy logic and genetic algorithm hybrids- Neuro fuzzy							
hybrids	hybrids-neuro genetic hybrids-Fuzzy genetic hybrids.						
Text bo	oks						
1. S. Educa	Haykins, Neural networks a comprehensive foundation, Pea ation.	rson					
2. L.	Fausett, Fundamentals of Neural Networks, Prentice Hall 19	994.					
3. Tir Mo	<ol> <li>Timothy J Ross, Fuzzy Logic with Engineering Applications, McGrawHill, New York.</li> </ol>						
Referen	ce books						
1. S. Ltd	N. Sivanandam, S. N. Deepa, Principles of Soft Computing, V l.	Viley India Pvt.					
2. S. 1 and	Rajasekharanand and G.A. VijayalakshmiPai, Neural Networ d	k, Fuzzy Logic					
3. Ge	netic Algorithms- Synthesis and Applications, Prentice Hall	of India.					
4. D.I Lea	E. Goldberg, Genetic Algorithms in search Optimization and arning,	Machine					
5. Pea	arson Education.						
6. Am	nitKonar, Artificial Intelligence and Soft Computing, First Ed	dition,CRC					
Pre	ess,						
7. Jo	hn Yen, Reza Lengari, Fuzzy Logic- Intelligence, Contro	l and					
Int	ormation, Pearson Education.						
	COURSE CONTENTS AND LECTURE SCHEDULE	No. of					
No.		Hours					
	MODULE 1						
1.1	Introduction to fuzzy logic: Fuzzy Sets-Fuzzy set operations	1					
1.2	Introduction to fuzzy logic: Fuzzy Sets-Fuzzy set operations	1					
1.3	Fuzzy relations-Cardinality of fuzzy relations-operations on	1					
1.4	1.4Fuzzy Relations-Properties of Fuzzy relations-properties10 fuzzy relations.1						
1.5	1.5Fuzzy Relations-Properties of Fuzzy relations-properties10 fuzzy relations.1						
1.6	Membership functions-features of membership functions	1					
1.7	Membership functions-features of membership functions						

1.8	Fuzzification-methods of membership value assignments-fuzzy rule base	1
1.9	Fuzzification-methods of membership value assignments-fuzzy rule base	1
	MODULE II	
2.1	Defuzzification methods	1
2.2	Defuzzification methods	1
2.3	Fuzzy logic controller (Block diagram).	1
2.4	Fuzzy logic controller (Block diagram).	1
2.5	Artificial neural networks. Basic concepts	1
2.6	Artificial neural networks. Basic concepts	1
2.7	Neural network architecture-Single layer feed forward network-	1
2.8	Multilayer feed forward network-Recurrent networks	1
2.9	Multilayer feed forward network-Recurrent networks	1
	MODULE III	
3.1	Characteristics of Neural networks- Learning methods.	1
3.2	Characteristics of Neural networks- Learning methods.	1
3.3	Perceptron networks-Back propagation networks	1
3.4	Perceptron networks-Back propagation networks	1
3.5	Perceptron networks-Back propagation networks	1
3.6	Radial base function network-Hopfield network	1
3.7	Radial base function network-Hopfield network	1
3.8	Radial base function network-Hopfield network	1

3.9	Kohonen self-organising maps	1
3.10	Kohonen self-organising maps	1
	MODULE IV	
4.1	Fundamentals of genetic algorithms- Basic concepts- working principle	1
4.2	Fundamentals of genetic algorithms- Basic concepts- working principle	1
4.3	Encoding-different methods	1
4.4	Encoding-different methods	1
4.5	Fitness function-reproduction-different methods.	1
4.6	Fitness function-reproduction-different methods.	1
4.7	Fitness function-reproduction-different methods.	1
4.8	Genetic modelling-inheritance- crossover mutation-convergence of genetic algorithm.	1
4.9	Genetic modelling-inheritance- crossover mutation-convergence of genetic algorithm.	1
4.10	Genetic modelling-inheritance- crossover mutation-convergence of genetic algorithm.	1
	MODULE V	
5.1	Hybrid systems: Neural network, fuzzy logic and genetic algorithm hybrids	1
5.2	Hybrid systems: Neural network, fuzzy logic and genetic algorithm hybrids	1
5.3	Hybrid systems: Neural network, fuzzy logic and genetic algorithm hybrids	1
5.4	Neuro fuzzy hybrids-neuro genetic hybrids	1
5.5	Neuro fuzzy hybrids-neuro genetic hybrids	1

5.6	Neuro fuzzy hybrids-neuro genetic hybrids	1
5.7	Fuzzy genetic hybrids.	1
5.8	Fuzzy genetic hybrids.	1

	CO Assessment Sample Questions
1	1. Explain the features of fuzzy membership functions with proper
1	diagrams.
	2. Discuss fuzzy equivalence relations and list out its properties?
	3. For the fuzzy sets A = $\{0.2/x1 + 0.9/x2\}$ and B = $\{0.3/y1 + 0.5/y2 + 0.5/y2 + 0.5/y2\}$
	1/y3},
	find the fuzzy relation A×B
	1. Defuzzify the following output membership function using centroid
2	method:
	0/0, 0.3/1, 0.3/3.5, 0.5/4, 0.5/5.5, 1/6, 1/7, 0/8.
	2. Explain any five defuzzification methods.
3	List the stage involved in Back Propagation Algorithm?
4	Explain different types of Encoding Techniques.
F	Explain the characteristics and different classifications of a neuro-fuzzy
5	hybrid system.

# FIFTH SEMESTER MINOR

24CHM509		HEAT AND MASS TRANSFER						L	Т	Р	J	IS	С	Yea Introd	r of uction	
										0	0	0		4	20	24
Preamb	ole: 🗇	Гhe	obje	ctive	of th	ne cou	arse is	to in	itro	luc	e tl	ne	Va	ari	ous mo	des of
heat																
transfe	r, con	ıdu	ction,	con	vectio	on an	d radi	ation	and	als	so t	he	b	as	ics of n	lass
transfer	r															
Prerequ	isite	e: N	11													
<b>Course</b> to	Outo	con	nes: A	fter	the co	omple	etion o	f the c	cour	se t	he	sti	ud	en	ıt will b	e able
CO1	Apply principles of heat transfer to engineering problems															
CO2	Analyse and obtain solutions to problems involving various modes															
	of heat transfer															
CO3	Explain laminar and turbulent boundary layers and ability															
	to															
	tormulate energy equation in flow systems.															
CO4	Apply principles of mass transfer to engineering problems															
CO - PO MAPPING																
CO	PO1	L	PO 2	90 3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	PO	28	Р( 9	ן ד נ	<u>90</u> )	1	PO11	PO12
CO1	3	;	3	3	2											
CO2	3	;	3	3	2											
CO3	3	;	3	3	2											
CO4	3	;	3	3	2											
	Assessment Pattern															
				(	Conti	nuous	s Asses	ssmen	ıt				F	nd	Somes	tor
Bloom's Category Tools								Enu Semester Examination								
					Tes	stl	Tes	st2	Oth too	ier ls	Examination					
Remem	ber				✓		~		~		V					
Unders	erstand V V V				~											
Apply					~		~		~			✓				
Analyse	<u>,</u>								~							
Evalua	te								•							
Create	Create								~							
					Marl	k Dist	tributi	on of	CIA							

Course	Theory [L- T]	Tota								
		Tata								
Structur e [L-T-P- J]	At	tendance	Ass	ignment	Test-1	Test-2	2	l Mark s		
----------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------	--------------------	--------	------	----------------	--	--
4-0-0-0		5		15	10	10		40		
	Total Mark distribution									
Total Mar	rks	CIA (M	arks)	ESE	C (Marks)	ES	SE D	uration		
100		40	) 		60		3 H	lours		
		End Seme	ster E	<u>kaminatioi</u>	<u>n [ESE]:</u> Pa	ttern				
PATTERN		PART A	<b>\</b>		PART B		ES	E Marks		
PATTERN 1	FERNPART A10 Questions, each question carries10 Questions, each question carries2 marks2 Marks:Marks:(2x10) =20 marks)		, 2 x10 <s)< td=""><td>2 que given from eae which 1 be an question maximu division Each q 8 Marks: Time: 3</td><td></td><td>60</td></s)<>	2 que given from eae which 1 be an question maximu division Each q 8 Marks: Time: 3		60				
	То	otal Marks:	: 20	Total Ma marks]	rks: [5x8 =	= 40				
SYLLABUS										
MODULE I :	MODULE I : Conduction									
Modes of H Thermal co thermal co	Modes of Heat Transfer: Conduction: Fourier law of heat conduction- Thermal conductivity of solids, liquids and gases- Factors affecting thermal conductivity- Most general heat conduction equation in									

Cartesian, cylindrical and spherical coordinates (no derivation required), One dimensional steady state conduction without heat generation conduction through plane walls, cylinders and spheres,

Critical radius of insulation.

**MODULE II** : Boundary layer and convection

Elementary ideas of hydrodynamics and thermal boundary layers-Thickness of Boundary layer-Displacement, Momentum and Energy thickness (description only).Convection heat transfer: Newton's law of cooling-Laminar and Turbulent flow, Reynolds Number, Critical Reynolds Number, Prandtl Number, Nusselt

Number, Grashoff Number and Rayleigh's Number.

# **MODULE III** : Radiation

Radiation- Nature of thermal radiation-definitions and conceptsmonochromatic and total emissive power-Intensity of radiation- solid angle- absorptivity, reflectivity and transmissivity-Concept of black bodydisplacement Planck' law-Kirchoff's law-Wein's law-Stefan Boltzmann's lawblack. real gray and surfaces-Configuration factor

**MODULE IV** : Introduction to mass transfer

Mass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion-

diffusion coefficient Steady state diffusion of gases and liquids through solid- equimolar diffusion, Isothermal evaporation of water through airsimple problems.

**MODULE V** : Mass transfer coefficients

Convective mass transfer- Evaluation of mass transfer coefficientempirical

relations- simple problems- analogy between heat and mass transfer.

# Text books

- 1. Sachdeva R C, Fundamentals of Engineering Heat and Mass Transfer, New Age Science Limited, 2009
- 2. R.K.Rajput. Heat and mass transfer, S.Chand & Co., 2015
- 3. Nag P K., Heat and Mass Transfer, McGraw Hill, 2011

# **Reference books**

- 1. Yunus A Cengel, Heat Transfer: A Practical Approach, McGraw Hill, 2015
- 2. Holman J P, Heat Transfer, McGraw Hill, 2011
- 3. Frank P. Incropera and David P. Dewitt, Heat and Mass Transfer, John Wiley and sons, 2011 COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
		mouro
	MODULE I (9 hours)	
1.1	Modes of Heat Transfer	1
1.2	Fourier law of heat conduction-Thermal conductivity of solids,	1
	liquids and gases	
1.3	Factors affecting thermal conductivity	1

1.4	Most general heat conduction equation in Cartesian,	1
	cylindrical and spherical coordinates	
1.5	Most general heat conduction equation in	1
	Cartesian,	
	One dimensional steady state conduction without	1
1.6	heat	1
	generation conduction through plane walls, cylinders	
	and spheres	
17	One dimensional steady state conduction without heat	1
1.7	generation conduction through plane walls, cylinders	
	and spheres	
1.8	Critical radius of insulation	1
1.9	Critical radius of insulation	1
	MODULE II (10 hours)	
2.1	Hydrodynamics and thermal boundary layers	1
2.2	Hydrodynamics and thermal boundary layers	1
2.3	Thickness of Boundary layer-Displacement, Momentum	1
2.0	and Energy thickness	
	Thickness of Boundary layer-Displacement, Momentum	1
2.4	and	
	Energy thickness	
2.5	Newton's law of cooling- Laminar and Turbulent flow	1
2.6	Newton's law of cooling- Laminar and Turbulent flow	1
2.7	Reynolds Number, Critical Reynolds Number, Prandtl Number.	1
	Nusselt Number, Grashoff Number and Rayleigh's	
	Number.	
2.8	Reynolds Number, Critical Reynolds Number, Prandtl Number.	1
	Nusselt Number, Grashoff Number and Rayleigh's Number	
2.9	Reynolds Number, Critical Reynolds Number, Prandtl Number,	1
	Nusselt Number, Grashoff Number and Rayleigh's Number	
2.10	Reynolds Number, Critical Reynolds Number, Prandtl Number,	1
	Nusselt Number, Grashoff Number and Rayleigh's Number	
	MODULE III (11 hours)	
3.1	Radiation- Nature of thermal radiation-definitions and	1

	concepts	
3.2	Radiation- Nature of thermal radiation-definitions and	1
	concepts	
3.3	Monochromatic and total emissive power-Intensity of radiation- solid angle	1
3.4	Monochromatic and total emissive power-Intensity of radiation- solid angle	1
3.5	Absorptivity, reflectivity and transmissivity-Concept of black body	1
3.6	Absorptivity, reflectivity and transmissivity-Concept of black body	1
3.7	Planck' law- Kirchoff's law- Wein's displacement law	1
3.8	Stefan Boltzmann's law- black, gray and real surfaces	1
3.9	Configuration factor	1
3.10	Configuration factor	1
3.11	Configuration factor	1
	MODULE IV (8 hours)	
4.1	Mass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion	1
4.2	Mass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion	1
4.3	Diffusion coefficient, Steady state diffusion of gases and liquids through solid	1
4.4	Diffusion coefficient, Steady state diffusion of gases and	1
4.5	Diffusion coefficient, Steady state diffusion of gases and liquids through solid	1
4.6	Equimolar diffusion, Isothermal evaporation of water through air- simple problems	1
4.7	Equimolar diffusion, Isothermal evaporation of water through air- simple problems	1

4.8	Equimolar diffusion, Isothermal evaporation of water through	1
	air- simple problems	
	MODULE V (10 hours)	
5.1	Convective mass transfer- Evaluation of mass transfer coefficient	1
5.2	Convective mass transfer- Evaluation of mass transfer coefficient	1
5.3	Convective mass transfer- Evaluation of mass transfer coefficient	1
5.4	Empirical relations	1
5.5	Empirical relations	1
5.6	Empirical relations	1
5.7	Simple problems- analogy between heat and mass transfer	1
5.8	Simple problems- analogy between heat and mass transfer	1
5.9	Simple problems- analogy between heat and mass transfer	1
5.10	Simple problems- analogy between heat and mass transfer	1

	CO Assessment Sample Questions
	A furnace wall is made up of three layers of thicknesses 250 mm, 100 mm
	and 150 mm with thermal conductivities of 1.65 W/m.K and 9.2
1	W/m.K respectively. The inside is exposed to gases at 1250°C with a convection coefficient of 25 W/m ² .K. and the inside surface is at 1100°C, the outside surface is exposed to air at 25°C with convection coefficient of 12 W/m ² .K. Determine (a) the unknown thermal conductivity K (b) the overall heat transfer coefficient (c) all the intermediate temperatures?
2	A hollow sphere (k = 65 W/m.K) of 120 mm inner diameter and 350 mm outer diameter is covered 10 mm layer of insulation (k =10 W/m.K). The inside and outside temperatures are 500 °C and 50 °C respectively. Calculate the rate of heat flow through this aphore
3	Explain the boundary layer concept

	Dry air at 300 °C and 1 atm flows over a wet flat plate 600 mm.
4	velocity of 50 m/s. Calculate the mass transfer coefficient of water
	vapour in air at the end of the plate. Take the diffusion coefficient
	of water vapour in air, D = $0.26 \times 10^{-4} \text{ m}^2/\text{s}$ .

# SIXTH SEMESTER

24CHT601
270111001

Р	J	S	С	Year of Introduction
0	0	2	3	2024

Preamble: This course is meticulously crafted to provide students with a profound exploration of Chemical Reaction Engineering. The course is intended to familiarize the students with concepts of non-ideal flow, heterogeneous catalysis and design aspects of catalytic reactors and gas gas-liquid Reactors. By the end of the course the students will possess a comprehensive skill set and theoretical knowledge crucial for the analysis, and design of reactors in diverse chemical reaction engineering scenarios.

Prerequisite: Nil

**Course Outcomes**: After the completion of the course the student will be able to

CO 1	Determine RTD inform	conversion ation.	in	real	reactors	using	flow	models	and

- **CO 2** Design chemical reactors for fluid particle non catalytic reactions.
- **CO 3** Develop rate laws and determine rate law parameters to design chemical reactors for solid catalytic reactions.
- Analyse the effect of diffusion process and reaction kinetics in **CO 4** porous catalyst system.
- Develop design equations for heterogeneous catalytic reactors. **CO 5**

 <b>CO</b> -	PO MA	PPING	r	
DOF	DOC			<b>D</b>

со	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	PO8	<b>PO9</b>	PO1 0	PO11	PO12
CO 1	3	3	2									
CO 2	3	3	2									
CO 3	3	3	2									
CO 4	3	3										
CO 5	3	3	2									

Assessment Pattern								
	Continuous	Assessmen	End Semester					
Bloom's Category	Test1	Test 2	Examination					
Remember	<b>v</b>	<b>v</b>	~	✓				
Understand	<b>v</b>	<ul> <li>✓</li> </ul>	<b>v</b>	~				
Apply	<b>v</b>	<ul> <li>✓</li> </ul>	<b>v</b>	~				
Analyse			<b>v</b>					
Evaluate			<b>v</b>					
Create			<b>v</b>					

Mark Distribution of CIA									
<b>Course Structure</b>	Attendance	Th	Total						
[L-T-P-J]		Assignment	Test-1	Test-2	Marks				
2-1-0-0	5	15	10	10	40				

Total Mark distribution								
Total MarksCIA (Marks)ESE (Marks)ESE Duration10040603hrs								
		End Semester	Examina	tion [ESE]:	Patte	rn		
PATTERN		PART A		PART E	3		ESE Marks	
PATTERN 1	10 Qu quest mark Marks marks	iestions, each ion carries 2 s s: (2x10 =20 s)	<ul><li>2 ques from e which answer can ha sub div</li><li>Each</li><li>Marks:</li><li>Time: 3</li></ul>	stions will ach modu 1 question red. Each ve a maxivisions. question 8 marks. (5x8 = 40 8 hours	l be g ule, ou shou ques imum carrie marks	given ut of Id be stion of 2 es s)	60	
	Total	Marks: 20	Total M marks	Iarks: [5x8	3 = 40			

# SYLLABUS

MODULE I: Basics of non-ideal flow

Importance & interpretation of RTD, C, E & F curves & Statistical interpretation, Dispersion model. Tanks in series model, Conversion in non-ideal flow reactors for simple systems.

**MODULE II** : Non catalytic systems

Introduction to Fluid-Fluid reactions, Kinetics of straight mass transfer without reaction, Kinetics for direct mass transfer with the reaction for all types of reactions, the significance of Hatta Number and related problems on fluid-fluid reactions.

Introduction to Fluid-Particle reactions, selection of suitable model, Kinetics for different rate-controlling steps for spherical particles of unchanging size

and shrinking spherical particles, limitation of the shrinking core model, rate determining steps with a combination of resistances and related problems

**MODULE III** : Catalysis

Introduction to catalysis, Properties of catalysts, Estimation methods for catalytic properties, Promoters, Inhibitors etc., Mechanism of catalysis, Rate equations for different rate controlling steps.

**MODULE IV** : Solid Catalyzed Reactions

Rate equation for surface kinetics, heterogeneous systems, Pore diffusion resistance combined with surface kinetics, Thiele modulus and enhancement factor.

**MODULE V** : Performance equation for different reaction systems

Performance equations for reactors containing porous catalyst particles, Experimental methods for finding rates, Packed bed catalytic reactor & reactors with suspended solid catalyst. Gas-liquid reactors: Trickle Bed, Slurry reactors. Three phase fluidized bed.

#### Text books

- 1. Octave Levenspiel, Chemical Reaction Engineering, 3rd Edition, John Wiley & Sons, 2001.
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering. 3rd Edition Prentice Hall,2001.

# Reference books

- 1. J.M. Smith, Chemical Engineering Kinetics -3rd Edition, McGraw Hill., 1984
- 2. K.A. Gavhane, Chemical Reaction Engineering-I, series Volume-1

# 3. Nirali Prakashan., ISBN- 13: 9788185790879, 2011.

COURSE CONTENTS AND LECTURE SCHEDULE						
No.		No. of Hours				
	<b>MODULE 1</b> (6 hours)					
1.1	Importance & interpretation of RTD,	1				
1.2	C, E & curves & Statistical interpretation.	1				
1.3	C, E & curves & Statistical interpretation.	1				
1.4	Dispersion mode.	1				
1.5	Tanks in series model.	1				
1.6	Conversion in non- ideal flow reactors for simple systems.	1				
	<b>MODULE II</b> (9 hours)					
2.1	Introduction to Fluid-Fluid reactions.	1				
2.2	Kinetics of straight mass transfer without reaction.	1				
2.3	Kinetics for direct mass transfer with the reaction for all types of reactions.	1				

2.4	the significance of Hatta Number and related problems on fluid-fluid reactions.	1
2.5	Introduction to Fluid-Particle reactions, selection of suitable model.	1
2.6	Kinetics for different rate-controlling steps for spherical particles of unchanging size and shrinking spherical particles.	1
2.7	limitation of the shrinking core model.	1
2.8	rate determining steps with a combination of resistances and related problems.	1
2.9	rate determining steps with a combination of resistances and related problems.	1
	<b>MODULE III</b> (6 hours)	

3.2	Estimation methods for catalytic properties, Promoters, Inhibitors etc.	1
3.3	Mechanism of catalysis.	1
3.4	Mechanism of catalysis.	1
3.5	Rate equations for different rate controlling steps.	1
3.6	Rate equations for different rate controlling steps.	1
	MODULE IV (8 hours)	
4.1	Rate equation for surface kinetics.	1
4.2	Rate equation for surface kinetics, heterogeneous systems.	1
4.3	Pore diffusion resistance combined with surface kinetics.	1
4.4	Pore diffusion resistance combined with surface kinetics.	1
4.5	Pore diffusion resistance combined with surface kinetics.	1
4.6	Thiele modulus and enhancement factor.	1
4.7	Thiele modulus and enhancement factor.	1
4.8	Thiele modulus and enhancement factor.	1
	<b>MODULE V</b> (7 hours)	
5.1	Performance equations for reactors containing porous catalyst particles.	1
5.2	Experimental methods for finding rates.	1
5.3	Packed bed catalytic reactor & reactors with suspended solid catalyst.	1
5.4	Packed bed catalytic reactor & reactors with suspended solid catalyst.	1
5.5	Gas-liquid reactors: Trickle Bed, Slurry reactors. Three phase fluidized bed.	1

5.6	Gas-liquid reactors: phase fluidized bed.	Trickle	Bed,	Slurry	reactors.	Three	1
5.7	Gas-liquid reactors: phase fluidized bed.	Trickle	Bed,	Slurry	reactors.	Three	1

	CO Assessment Sample Questions
	A Sample of tracer is injected as a pulse to a reactor and following C pulse versus time data is obtained. Tabulate E (t) and F (t) values.
1	
2	Calculate the time required for complete burning of graphite (Size R0 =5mm, density =2.28g/cc) in an 8% oxygen stream at 900 0C and 1 atm. For high gas velocity assume that film diffusion does not offer any resistance to transfer and reaction. Rate constant $k$ "=20 cm/s.

3	For the reaction $A + B \rightarrow C$ , the mechanism is given by, $A + S \rightarrow A.S$ adsorption $B + S \rightarrow B.S$ $A.S + B.S \rightarrow C.S + S$ surface reaction $C.S \rightarrow C + S$ . desorption Develop the overall rate equation assuming (a) adsorption of A as rate controlling (b) Surface reaction as rate controlling.								
4	Obtain Thiele modulus from the derivation describing diffusion and reaction for $A \rightarrow B$ .								
5	Determine the amount of catalyst needed in a packed bed reactor with a very large recycle rate (assume mixed flow) for 35 % conversion of A to R for a feed rate of 2000mol/hr of pure A at 3.2 atm and 117 °C. For the reaction at this temperature, $A \rightarrow 4R$ , -rA'= 96 C _A , mol/Kg catalyst.hr.								
	T, min 1 3 5 7 9 11 13 15								

T, min	1	3	5	7	9	11	13	15
C pulse, g/L	0	0	10	25	8	5	0	0

		INS	TRU	лемт	ΑΤΙΟ	N 8.		L	Т	Р	J	S	С	_	Year of
24CH	P602	PRO	OCES	s co	NTRO	)L		2	0	2	0	1	2	Int	troduction
	1 1					1		4	U		0	4	3	•,	2024
Pream	ible:	Instr	umer	itatioi	n an	a pro	ocess	co	nti	rol	pl	lay	а	vita	al role in
manu	factur	nng, o	il and	l gas,	chen	ncal, p	bharm	lace	ut	Ica	ls, a	and	ma	any o	others. The
ability	to mo	onitor	and c	ontro	l proc	cess va	riable	es lil	ke 1	ten	npe	rati	ire,	pres	ssure, flow,
and le	evel er	isures	s optii	nal o <u>r</u>	perati	on, re	duces	s do	wn	tin	ne,	mir	imi	zes	waste, and
enhan	ices o	overal	1 pro	cess	effic	iency.	This	s co	our	se	in	ten	ds	to	provide a
compr	rehens	sive	under	stand	ling	of in	istrun	nen	tat	ion	ı a	nd	pı	roce	ss control
princi	ples, t	techni	ques,	and o	devic	es. At	the er	nd c	of t	he	cou	irse	, th	le st	udents will
gain a	a soli	d fou	ındati	on in	the	fund	amen	tal	CO	nce	epts	a	nd	tern	ninology of
instru	menta	ation a	and p	rocess	s cont	rol. Tł	ie pra	ctic	e h	ou	rs c	an	be ı	atiliz	ed to learn
real-ti	me dy	vnami	cs an	d con	trol o	of proc	ess pa	arar	net	ters	s si	ıch	as	tem	perature,
pressi	are, le	vel, a	nd co	ncent	ratior	ı in si	mple 1	basi	ic s	sys	tem	s.			
Prerec	quisite	e: Nil													
Cours	e Out	come	s: Afte	er the	comp	pletion	of th	e co	ur	se	the	stu	den	t wi	ll be able to:
CO1	Cate	egorize	e mea	surin	g ins	trume	nts fo	r in	ıdu	str	rial	app	olica	atior	ns and
COI	illus	trate i	instru	ment	ation	for ter	npera	itur	e, a	and	l pr	essi	ure.		
	Deve	elop th	ie trar	nsfer f	uncti	on of s	imple	firs	t-o	rde	er sy	vste	ms,	first	t-order
<b>CO2</b>	syste	ems in	n serie	es, an	d see	cond-o	rder a	syst	em	s a	and	pr	edic	t th	e response
	of fi	rst ar	nd sec	ond-or	rder s	system	s.								
	Desc	cribe t	he co	mpone	ents d	of a co	ntrol	syst	em	ı, d	leve	lop	its	clos	ed-loop
CO3	trans	sfer fu	nctio	n, and	l pred	dict th	e con	trol	ac	tio	n o	fP,	PI,	PD,	and PID
	cont	roller	s.											_	
CO4	Com	iment	on th	ie sta	bility	of co	ntrol :	syst	em	18 1	usit	ng t	he.	Roo	t Locus
	metr	noa, II	requer	icy re	spons	se met.	noa, a	and	pe	rioi	rm :	rua	ime	ntar	y controller
	tum	iig.			CO	- PO	МАРР	PING	ł						
CO	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	PO6	P07	PC	28	PC	29	PO	10	PO	PO12
00				- • ·						- 1				11	
CO1	3	3													
<b>CO2</b>	3	3	2	2	2			2	2	2	2				2
CO3	3	3	2												
<b>CO4</b>	3	3	2	2	2			2	2	2	2				2
			Asses	smen	t Pat	tern f	or Th	eor	y C	on	npo	ner	t		
				Conti	inuov	ıs Ass	essme	ent				_	1 0		
Blo	om's	Categ	ory	Tools	<b>i</b>				End Semester		ester				
				Tes	t1	Tes	t 2	Otł	ıer			СX	am	inat	.1011
				1				too	ols					1	
Remen	nber					√									
Under	stand					√									
Apply						√								$\checkmark$	
Analys	se														
Evalua	ate														

Create		$\checkmark$	
As	sessment Pat	ttern for Lab Comp	onent
	4	Continuous	Assessment Tools
Bloom's Ca	tegory	Classwork	Test1
			^
Remember			
Understand		$\checkmark$	$\checkmark$
Apply		$\checkmark$	$\checkmark$
Analyse		$\checkmark$	
Evaluate		$\checkmark$	
Create		V	

# Mark Distribution of CIA

		The	ory [L- T	Pract				
Course Structur e [L-T-P- J]	Attendanc e	Assignmen t	Test-1	Test-1 Test-2		Lab Exam	Total Mark ¹ s	
2-0-2-0	5	15	10	_	20	10	60	

Total Marks distribution								
Total Ma	rks CIA (M	arks)	ESE (Marks)	E	SE Duration			
100	60		40		2.5 Hrs			
	End Semest	ter Ex	amination [ESE]: Pat	tern				
PATTERN	PART A		PART B		ESE Marks			
PATTERN 2			2 questions will be giv from each module, out which1question show be answered. Ea question can have maximum of subdivisions. Each question carries marks. Marks: (5x 8 = 40 mark Time: 2.5 hours	ven ald ach a 2 3 8 8 8 8 8	40			
	Total Marks	:0 ]	l'otal Marks: [5x8 = 40					
MODULE I: Concept of Measurement								

Measurement methods – Direct and Indirect methods. Functional elements – primary, secondary, manipulating element, data transferring element. Static characteristics – definition of accuracy, precision, repeatability, drift, sensitivity, dead zone, causes of dead zone, and static error. Dynamic characteristics – speed of response, time lag, dynamic error.

Sensors and Transducers, Data Acquisition – Overview. Temperature measurement: Electrical temperature sensor – thermocouples and thermistors. Pressure measurement: Principle, construction, and applications of Bourdon tube, ionization gauge, and McLeod gauge.

#### **MODULE II: Laplace transforms and First Order systems**

Laplace transforms - final value theorem - initial value theorem, inversion by partial fraction, solution of differential equations. Linear open loop systems - mercury thermometer, liquid level process – single tank system. Response for various input forcing functions.

#### **MODULE III: Second-Order Systems**

U-tube manometer – mathematical model and transfer function. Characteristics of a second order system, Step response of second order systems. Control valves- types, working principle, selection.

#### **MODULE IV: Closed Loop Systems**

P, PI, and PID Controllers - basic principles and transfer functions.

Closed loop systems – feedback control - servo and regulatory control problems - block diagram development – Block diagram reduction – Transient response of simple control systems – step response and offset.

#### **MODULE V: Stability Analysis**

Stability Analysis: Concept of BIBO stability and Asymptotic stability - Time response for various pole locations - stability of feedback systems - Routh - Hurwitz criterion for stability, Root locus technique - plotting root locus diagram, Frequency response analysis - Bode Diagram, Phase margin and Gain Margin, Ziegler - Nichols Controller tuning.

#### Textbooks

- 1. Jain R K, Mechanical and Industrial measurements, Khanna publishers
- 2. Patranabis D, Principles of Industrial Instrumentation, Tata-McGraw Hill.
- 3. Coughanewr D.P., Process Systems Analysis & Control, McGraw Hill
- 4. Stephanopoulos G., Chemical Process Control, An Introduction to Theory & Practice, Prentice Hall of India
- 5. Dale E. Seborg, Thomas F. Edgar and Duncan A. Mellichamp, Process Dynamics and Control, John Wiley & Sons Inc. Second Edition.

Reference books							
1. D	1. Donald P Eckman, Industrial Instrumentation, CBS Publishers and						
D	istributors, New Delhi						
2. E	ckman D.P., Principles of Industrial Process Control, John	Wiley					
&	Sons Inc, NY (1946)						
3. H	3. Harriot P., Process Control, Tata McGraw Hill						
4. Ceaglske N.H., Automatic Process Control for Chemical Engineers,							
J	John Wiley & Sons, NY, 1956						
COURSE CONTENTS AND LECTURE SCHEDULE							
NT		No. of					
NO.		Hours					
	MODULE 1 (5 Hours)						
	Measurement methods – Direct and Indirect methods.						
1.1	Functional elements - primary, secondary, manipulating	1					
	element, data transferring element.						

1.2	Static characteristics – definition of accuracy, precision, repeatability, drift, sensitivity, dead zone, causes of dead zone, and static error. Dynamic characteristics – speed of response, time lag, dynamic error.	1
1.3	Sensors and Transducers, Data Acquisition - Overview	1
1.4	Temperature measurement: Electrical temperature sensor – thermocouples and thermistors	1
1.5	Pressure measurement: Principle, construction, and applications of Bourdon tube, ionization gauge, and McLeod gauge	1
	MODULE II (5 Hours)	
2.1	Laplace transform - final value theorem - initial value theorem	1
2.2	inversion by partial fraction - solution of differential equations.	1
2.3	Linear open loop systems - mercury thermometer	1
2.4	Linear open loop systems - liquid level process – single tank system	1
2.5	Response of these systems for various input-forcing functions – step,	1
	ramp, impulse, and sinusoidal inputs.	
	MODULE III (4 Hours)	
3.1	U-tube manometer – mathematical model and transfer function	1
3.2	Second-order system – characteristics and response toward step	1
	Iulicului Second order system characteristics and response	
3.3	toward step	1

	function						
3.4	Control valves- types, working principle, selection	1					
	MODULE IV (5 Hours)						
4.1 P, PI, and PID Controllers - basic principles and transfer functions.							
4.2	Closed loop systems - feedback control	1					
4.3	servo and regulatory control problems	1					
4.4	block diagram development and block diagram reduction	1					
4.5	Transient response of simple control systems – step response and offset	1					
	MODULE V (5 Hours)						
5.1	Stability Analysis: Concept of BIBO stability and Asymptotic stability, Time response for various pole locations	1					
5.2	stability of feedback systems - Routh - Hurwitz criterion for stability	1					
5.3	Root locus technique - plotting root locus diagram.	1					
5.4	Frequency analysis – Bode diagram, phase margin and gain margin	1					
5.5	Zeigler – Nichol's controller tuning	1					

# LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of Hour s	Experiment
1	Linear open loop systems - mercury thermometer	2	Dynamic Response of Mercury in Glass Thermometer
2	U-tube Manometer	2	Dynamic Response of U- tube Manometer
3	Linear open-loop systems	2	Dynamics of Thermocouple
4	Linear open loop systems - liquid level process: single tank system	2	Dynamics of liquid level system - Single tank
5	Interacting and non- interacting types	2	Dynamics of liquid level system - non-interacting tanks in series
6	Interacting and non- interacting types	2	Dynamics of liquid level system - Interacting tanks in series
7	Linear open loop systems - mercury thermometer	2	Dynamic Response of Thermometer in Thermowell
8	P, PI, and PID Controllers - basic principles and transfer functions.	2	Level Control Trainer – study of proportional, PI, PD, and PID controllers
9	P, PI, and PID Controllers - basic principles and transfer functions.	2	Pressure Control Trainer – study of proportional, PI, PD, and PID controllers
10	Closed-loop system	2	Valve Characteristics
11	stability of feedback systems	2	Plotting root locus and bode diagram using MATLAB-Simulink / Scilab-Xcos
12	stability of feedback systems	2	Control system design using MATLAB- Simulink / Scilab-Xcos

CO Assessment Sample Questions							
1	Suggest a method for the measurement of pressure above 10,000kg/cm ² .						
	Write its working principle						
	Find the final value of y(t) for the transfer function						
2	$y(s) = \frac{1}{s(s^3 + 3s^2 + 3s + 1)}$						



2401	IP603		МΔ	SS T	PANS	FER		L	Т	Р	$\mathbf{J}$	S	С	Ye Intro	ar of duction
2701	11 000	OPERATIONS - II						2	0	2	0	4	3	20	)24
<b>Preamble:</b> Objective of this course is to impart fundamental concepts of separation															
processes such as extraction, leaching, membrane separation, adsorption,															
humidification, drying and crystallization used in process industries. This course															
also	helps	stude	nts t	o qu	antify	, forn	nulate	e, a	nd	sol	ve e	ngi	nee	ring p	roblems
involv	ving dif	fferent	mass	tran	sfer op	peratio	ons th	rou	gh 1	theo	retic	al a	is w	ell as p	ractical
appro	oach.														
Prere	quisite	e: Nil													
Cours	se Out	comes	: Afte	r the	compl	letion	of the	cou	ırse	the	stuc	len	t wi	ll be al	ole to
<b>CO1</b>	Calcula	ate the	desi	gn pa	ramet	ers of	extra	ctio	n ai	nd 1	eachi	ing	pro	cesses.	
<b>CO2</b>	Select	suitab	le me	mbra	ne mo	odules	for se	epar	atio	on p	roces	sse	s.		
CO3	Apply	fundar	nenta	l ads	orptio	n isotl	herms	for	the	e ser	barat	ion	pro	cess.	
<b>CO4</b>	Detern	nine th	e hur	midifi	cation	para	meter	s us	sing	ар	sych	ron	netr	ic char	t.
<b>CO5</b>	Calcul	ate the	e desi	gn va	riable	s in d	rying	and	cry	vstal	lizat	ion	sys	tems.	
					CC	) - PO	MAP	PIN	G						
СО	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	PO	8	PO	9	PO	10	PO11	PO12
<b>CO1</b>	3	3	3					Э	3	3		3			2
<b>CO2</b>	3	3	3												2
CO3	3	3	3			3		Э	3	3	;	3			2
<b>CO4</b>	3	3	3					Э	3	3	;	3			2
CO5	3	3	3					Э	3	3	5	3			2

Assessment Pattern for Theory Component										
Bloom's	Continu Tools	ous Assess	sment	End Semester Examination						
Category	Test1 Test 2 Other tools		Other tools							
Remember	✓	✓	✓	√						
Understand	√	√	√	√						

Apply			1		√	√			1			
Analyse					√							
Evaluate						√						
Create												
Assessment Pattern for Lab component												
Continuous Assessment Tools												
Bloo	m	s Cat	egory		Cla	lss work	٢		Test	1		
Remember												
Understand	L											
Apply												
Analyse												
Evaluate												
Create												
				Ma	ırk Disti	ribution	of CIA					
					1	Theory [	L- T]	Pract	ical [P]			
Course Structure [L-T-P-J]	Attendance		Assi	gnment	Test-1	Test-2	Class work	Lab Exam	Total Marks			
2-0-2-0			5		15	10	-	20	10	60		
				То	tal Marl	ks distri	bution					
Total M	ar	ks	CIA	(Mar	rks) ESE (Marks)				ESE Duration			
100				60	40				2.5 Hours			
End Semest	ter	: Exa	minati	on [E	<u>SE]: Pat</u>	tern						
PATTERN		P	ART A			PAR	ГВ		ESE M	arks		
PATTERN 2	ERN Total Marka:				2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours				40			
Total Marks:     Total Marks: [5x8 = 40       marks]												
	_				SYLL	ABUS						
MODULE I	: L	/iquid	l-Liquio	d Ext	raction	and pu	rificatio	n				

Extraction –applications, ternary equilibria on triangular coordinate system, mixer rule, distribution curve, selectivity, choice of solvent. Single-stage and multistage extraction operations - Calculations for immiscible systems and partially miscible systems. Construction and working of mixer -settler cascades, sieve-tray columns, agitated towers, pulse columns and centrifugal extractors.

# MODULE II: Leaching and Membrane separation

Leaching – Rate of leaching, factors affecting rate of leaching. Working principles of leaching equipment- Shank's system- thickeners, classifiers and moving bed leaching equipment. Leaching equilibrium - constant underflow - variable underflow Single stage and multistage leaching.

Membrane separation processes – classification – types of membranes: flat, spiral wound, hollow fibre -concentration polarization – ultrafiltration.

# **MODULE III: Adsorption Operations**

Adsorption, types of adsorptions, properties of adsorbents, adsorption isotherm for single gases, Vapours and dilute liquid solutions, Adsorption isotherms – Freundlich and Langmuir, Fixed bed adsorption, adsorption wave, rate of adsorption and breakthrough curve.

# **MODULE IV: Humidification**

Humidification and dehumidification, use of humidity chart to find properties of air, Lewis relation, water cooling with air, types of cooling towers, Design of cooling tower, spray chambers for air humidification, principles of gas dehumidification.

# **MODULE V: Drying and Crystallization Operations**

Drying, equilibrium, bound and unbound moisture content, batch drying, rate of drying, mechanism of moisture movement, continuous drying, parallel and counter current, material and enthalpy balances, classification of industrial dryers for batch and continuous drying.

Principles of crystallization, purity, yield, energy requirements, supersaturation, nucleation-primary and secondary nucleation, growth of crystals-delta –L law.

#### Text books

- 1. Treybal R.E., Mass Transfer Operations, McGraw Hill.
- 2. Binay K Dutta, Principles of Mass Transfer & Separation Processes, PHI Learning Private Limited.

#### **Reference books**

- 1. K.V. Narayanan and B. Lakshmikutty. Mass Transfer-Theory and Applications, CBS Publishers.
- 2. N. Anantharaman and K.M.Meera Sheriffa Begum, Mass Transfer-Theory and Practice, PHI Learning Private Limited (2011) New Delhi.
- 3. Welty J.R., Wilson R.E. & Wicks C.E., Fundamentals of Momentum Heat and Mass Transfer, John Wiley.
- 4. Foust A.S. et. al., Principles of Unit Operations, John Wiley.
- 5. McCabe W.L., Smith J.C. & Harriot P., Unit Operations in Chemical Engineering, McGraw Hill.
- 6. Seader J.D.& Henley E.J Separation Process Principles, John Wiley & Sons.
- 7. Coulson J.M. & Richardson J.F., Chemical Engineering, Vol. II, ELBS, Pergamon.

	COURSE CONTENTS AND LECTURE SCHEDULE								
No.		No. of Hours							
	MODULE 1 (5 hours)								
1.1	Extraction –applications, ternary equilibria on triangular coordinate system.	1							
1.2	Mixer rule, distribution curve, selectivity, choice of solvent	1							

1.3	Single-stage and multistage extraction operations - Calculations for immiscible systems and partially miscible systems.	1
1.4	Construction and working of mixer -settler cascades, sieve-tray columns	1
1.5	Agitated towers, pulse columns and centrifugal extractors.	1
	<b>MODULE II (5 hours)</b>	
2.1	Leaching – Rate of leaching, factors affecting rate of leaching.	1
	Working principles of leaching equipment- Shank's system-	
2.2	thickeners, classifiers and moving bed leaching equipment.	1
	Leaching equilibrium - constant underflow.	
2.3	Variable underflow Single stage and multistage leaching.	1
2.4	Membrane separation processes – classification – types of	1
	membranes: flat, spiral wound, hollow fibre.	
2.5	concentration polarization – ultrafiltration.	1

	MODULE III (4 hours)									
3.1	Adsorption, types of adsorptions, properties of adsorbents.	1								
3.2	adsorption isotherm for single gases, vapours and dilute liquid solutions.	1								
3.3	Adsorption isotherms –Freundlich and Langmuir	1								
3.4	Fixed bed adsorption, adsorption wave, rate of adsorption and breakthrough curve.	1								
	MODULE IV (5 hours)									
4.1	Humidification and dehumidification, use of humidity chart to find properties of air	1								
4.2	Lewis relation, water cooling with air, types of cooling towers	1								
4.3	Design of cooling tower.	1								
4.4	Spray chambers for air humidification.	1								
4.5	Principles of gas dehumidification.	1								
	MODULE V (5 hours)									
5.1	Drying, equilibrium, bound and unbound moisture content,batch drying, rate of drying	1								
5.2	mechanism of moisture movement, continuous drying, parallel and counter-current, material and enthalpy balances	1								
5.3	classification of industrial dryers for batch and continuous drying.	1								
5.4	Principles of crystallization, purity, yield, energy requirements, supersaturation.	1								

	nucleation-primary and secondary nucleation, growth	
5.5	of crystals-delta –L law.	1

# LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of Hours	Experiment
1	Diffusivity and estimation - steady state diffusion of A through stagnant B	2	Diffusion coefficien t measurement
2	Gas absorption - Solubility of gases in liquid	2	Absorption in Packed bed columns
3	Distillation	2	Simple Distillation
4	Distillation	2	Steam Distillation

5	Liquid-Liquid Extraction	2	Liquid extraction: Determination of ternary liquid – liquid equilibria						
6	Leaching	2	Simple Leaching: varying number of stages Simple Leaching: varying solvent to feed ratio						
7	Leaching	2	Counter current leaching						
8	Leaching	2	Cross current leaching						
9	Adsorption	2	Adsorption: Determination of adsorption isotherm.						
10	Drying	2	Rotary Dryer						
	CO Assessment Sa	ample Q	uestions						
	A vegetable seed material cont washed with hydrocarbon solve a counter current unit. It is fou concentration of classifier as gi	aining ( nt in ord nd that ven belo	0.4 kg oil/kg insoluble solid is der to recover 90 % of the oil in the under flow varies with the w:						
1	under flow, (kg solution/ kg insoluble solid)	$\begin{array}{c c} 0.3\\ 3 \\ 2 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Concentration of solute in solution, ( <b>kg solute/kg</b> ( <b>solution</b> )	0.1	0.2 0.3 0.4 0.5						
	If the solvent input flow 0.5 kg stages required.	/kg insc	oluble solid, find the number of						
	Explain the suitability of varies	ous mer	mbrane modules used for the						

2	desalination separations Pervaporatio	with spen	ation. Cor uitable exar	npare the mples. (i) Rev	following verse Osmos	membrane sis, and (ii)					
	The following	ng labor	atory data v	were collected	in a batch	adsorption					
	study. Plot the data according to Freundlich Isotherm and determine										
	the values for the constants $n$ and $K_F$ . A volume of 500 mL is placed										
	in each flask, and the waste has an initial COD of 100 mg/L.										
		Flask	Mass of	Volume	Final						
		No.	C (mg)	in Flask	COD						
3		(mL)	(mg C/L)								
		1	965	500	3.5						
		2	740	500	5.2						

		3	548	500	8.0								
		4	398	500	12.5								
		5	265	500	20.5								
		6	168	500	33								
		7	0	500	100								
	Air at 303 K	and wit	th 75 % satu	ration is to be	prepared fro	om a supply							
	of warm summer air at 310.7 K and 35 % humidity. This is achieved												
	by spraying water to the inlet air and by heating the saturated air												
4	leaving the spray chamber to 303 K. Assume all the operations												
	are atmospheric pressure. Using the psychrometric chart, determine												
	the following	g:											
	(i) The temp	erature	of the air lea	aving the cham	ıber.								
	(ii) The amou	unt of w	ater evapora	ted per 1000 i	m ³ of air ent	ering the							
	chamber.												
	Calculate th	ne yield	of MgSO ₄ .71	$H_2O$ crystals w	vhen 1000 k	g saturated							
	solution of l	MgSO ₄ a	at 353 K is o	cooled to 303 l	K assuming	10 % of the							
5	water is lost	by evap	oration dur	ing cooling. Da	ata: Solubili	ty of MgSO ₄							
	at 353 K =	64.2 kg	/100 kg wate	er. Solubility o	f MgSO4 at 3	303 k = 40.8							
	kg/100 kg v	water. A	tomic Weigh	nt: Mg = 24, S	= 32.								

2404	8606			SEM				L	Т	Р	J	S		Year Introdu	of ction
24CA	5000			SEWI	INAK			0	0	4	0	4	2	202	:4
Pream	ıble: T	he co	urse'	Semin	ar' is	inten	ded to	οε	nal	ole	а	В.1	`ech	gradua	ate to
read, 1	unders	stand,	prese	ent an	d prep	bare re	eport	ab	out	a	n a	cad	lemi	c docur	nent.
This course can help the learner to experience how a presentation can be												ın be			
made about a selected academic document and also empower her/him to															
prepar	e a teo	chnica	l repo	rt.											
<b>Course Outcomes:</b> After the completion of the course the student will be able															
to	to														
<b>CO1</b>	<b>1</b> Identify academic documents from the literature which are related to														
	her/h	is area	as of 1	nteres	t.										
CO2	<b>O2</b> Apprehend an academic document from the literature which is related														
	to her	r/his a	areas	of inte	erest.										
CO3	Prepa	re a p	resent	tation	on a s	electe	d topi	ic.							
<b>CO4</b>	Give a	a pres	entati	on abo	out an	acad	emic	top	oic.						
<b>CO5</b>	Prepa	re a te	echnic	al rep	ort.										
·				(	CO - 1	PO MA	PPIN	G							
CO	<b>PO1</b>	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	I	<b>PO8</b>	]	209	P	010	PO11	PO12
<b>CO</b> 1	2	2	1	1		2	1								3
CO 2	3	3	2	3		2	1								3
CO 3	3	2			3				1				3		3
<b>CO 4</b>	3				2				1				3		3
CO 5	3	3	3	3	2	2			2				3		3

#### **General Guidelines**

- 1. The Department shall form an Internal Evaluation Committee (IEC) consisting of three senior faculty members.
- 2. Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than a very specific research work. It's advisable to choose a topic for the Seminar to be closely linked to the final year project area.
- 3. Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IEC. The IEC shall approve the selected topic/paper by the second week of the semester.

#### **Evaluation pattern**

The report and the presentation shall be evaluated by a team of internal members comprising three senior faculty members based on the style of presentation, technical content, adequacy of reference, depth of knowledge and overall quality of the report.

- a) Attendance: 5%
- b) Guide: 25%
- c) Technical Content: 30%
- d) Presentation: 40%

2451	PJ60'	7	soc	SOCIALLY RELEVANT L T P		J	s	С	Ye Intro	ar of duction					
2101		-		PR	OJEC'	Т		0	0	0	2	1	1	2	024
Pream	nble:	The	main	purp	oose o	of Soc	cially I	Rel	eva	nt	Ρ	roj	ect	s is to	o make
stude	ents 1	under	stand	their	· socia	al cor	nmitm	en	ts	th	ou	ıgh	p	rojects	which
benef	ïts bo	oth th	ie ins	titutic	on as	well a	as the	so	ocie	ety.	. Т	`he	СС	ommun	ity will
benefit from the focused contribution of students towards local development,															
and at the same time, the institution provides an opportunity for students to															
devel	develop social sensibility and responsibility. After the completion of the											of the			
course, the students will be able to think critically and creatively about social											it social				
issues, and to develop innovative solutions to address them.															
Prerequisite: Nil															
<b>Course Outcomes:</b> After the completion of the course the student will be able to															
<b>CO1</b>	CO1 Identify socially relevant problems.														
<b>CO2</b> Analyse the problems using surveys and research.															
CO3	<b>CO3</b> Suggest technical solutions to the identified problems using relevant state of														
	the	art te	chnolo	ogies.											
<b>CO4</b>	Prep	pare a	techr	nical r	eport.										
					<b>CO</b> -	PO M	IAPPIN	G							
со	<b>PO1</b>	<b>PO2</b>	PO3	PO4	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	P	28	P	<b>)9</b>	РО 0	)1	PO11	PO12
<b>CO1</b>										3	3				2
<b>CO2</b>	2	2		3						3	3				2
CO3	3	2		2				3	3	3	3	3	3		2
<b>CO4</b>								3	3	2	2	3	3		2
					Asses	sment	Patte	ern							
Blo	om's	Cate	70177			Con	tinuou	ls a	ass	ess	sm	en	t to	ools	
BIU	om s	Cate	gory		Eval	uation	1 1				F	Eva	lua	tion 2	2
Remei	mber														
Under	rstand	1													
Apply															
Analy	se														
Evalu	ate														
Create	e														

_____

		Mark	Distribution	n of CIA			
Course Structur e [L-T-P-J]	Log book	Fin	al Evaluatio	Repo	ort	Total Mark s	
0-0-0-2	25	Objective s	Execution Process				
		10	25	15	25		100
		Tota	l Mark distr	ibution			·
Total I	larks	CIA	(Marks)	Marks)	ES Du	E Iration	
100 100 -							-
		Ger	eral guideli	nes			

# • Activities for Socially Relevant Project

Conducting surveys and research on social issues and concerns to gain a better understanding of the problem and identify potential solutions.

Developing and implementing educational programs to promote awareness and understanding of social issues and concerns.

Collaborating with local NGOs and community groups to organize events and activities that promote social welfare and community development.

Developing and implementing social welfare programs that address the needs of marginalized and vulnerable communities, such as homeless individuals, refugees, and low-income families.

Conducting community service activities, such as volunteering at local shelters, food banks, and community centers.

• Developing and implementing environmental conservation programs that promote sustainable practices and reduce the impact of human activities on the environment.

Creating and distributing educational materials, such as pamphlets and brochures, to raise awareness about social issues and concerns.

♦ Organizing fund raising events to support social welfare programs and community development initiatives.

• Engaging in advocacy and lobbying efforts to influence public policy and promote social justice.

# □ Implementation of Socially Relevant Project

- □ Each student should complete a minimum of 60 hours of community service during their lower semesters (1-5).
- □ Assign a group of students or a single student to a particular habitation, village, or municipal ward in the near vicinity of their place of stay.

Each team should be assigned with a mentor to guide them through the process. The project can be any socially prevailing issue related to water and sanitation, environment, energy, ecology, health care, housing, differently abled, irrigation, disaster management, mines and geology, agriculture, sustainability, heritage,,educational and

entrepreneurship etc.

Each student shall keep a log book of their activities, which must be signed by their mentor or faculty member in charge.

♦ The participation of students in NSS/NCC/Club activities will not be coming under the purview of socially relevant projects.

Each team shall submit a report and make a brief presentation based on the service rendered to the society, and an evaluation will be conducted by a committee constituted by the Head of the Department.

# □ Procedure for doing Socially Relevant Project

Conduct a survey of the habitation to gain a better understanding of the social issues and concerns that need to be addressed. A common survey format could be designed to ensure consistency.

Develop a project work related to the student's domain or subject area that

addresses the identified social issues and concerns. The project should be designed to be socially relevant and have a positive impact on the community.

Implement the project work with the help of the local community and

relevant authorities. This could include organizing awareness programs, developing and implementing educational programs, conducting community service activities, and engaging in advocacy and lobbying efforts.

Monitor and evaluate the project work to ensure that it is having the desired impact on the community. This could include conducting surveys and research, gathering feedback from the local community, and tracking key performance indicators.

♦ Document the project work and its impact on the community, and share the findings with relevant stakeholders, including Each student shall keep a log book of their activities, which must be signed by their mentor or faculty member in charge.

♦ The participation of students in NSS/NCC/Club activities will not be coming under the purview of socially relevant projects.

◆ Each team shall submit a report and make a brief presentation based on the service rendered to the society, and an evaluation will be conducted by a committee constituted by the Head of the Department.

## □ Procedure for doing Socially Relevant Project

♦ Conduct a survey of the habitation to gain a better understanding of the social issues and concerns that need to be addressed. A common survey format could be designed to ensure consistency.

Develop a project work related to the student's domain or subject area that

addresses the identified social issues and concerns. The project should be designed to be socially relevant and have a positive impact on the community.

♦ Implement the project work with the help of the local community and relevant authorities. This could include organizing awareness programs, developing and implementing educational programs, conducting community service activities, and engaging in advocacy and lobbying efforts.

Solution And evaluate the project work to ensure that it is having the desired impact on the community. This could include conducting surveys and research, gathering feedback from the local community, and tracking key performance indicators.

♦ Document the project work and its impact on the community, and share the findings with relevant stakeholders, including the local community, government authorities, and academic institutions.

# □ Time frame for the socially relevant project

- $\Box$  Duration: 8 weeks
- □ Schedule:
- □ Socio-Economic Survey of the village / habitation (Two weeks): A group of students under the guidance of faculty mentors conduct a socio-economic survey of the village / habitation. They will interact with people to acquire basic knowledge on the project to be chosen for study and conduct the survey using a structured questionnaire.
- □ Community awareness campaign (One week): The student group takes up community awareness campaigns based on the above survey conducted by identifying the problems or vulnerable issues. They may also conduct house-to- house campaign on socially relevant theme. Eg: Government welfare programs, health care, consumer protection, food adulteration, digital transactions, information sources etc.

□ Main project (4 weeks): A group of students chose a topic related to their subject area and conduct a project which includes data collection interviews, internship in any selected unit or department and suggesting solution for the problem identified.

□ Report preparation (1 week): The student should submit a project report duly signed by the mentor.

# **Evaluation** pattern

- There will be only internal evaluation for this project.
- Each faculty member is to be assigned with a group of five students.
   The faculty member will act as a faculty mentor for the group and is in charge for the learning activities of the students and also for the comprehensive and continuous assessments of the students.
- □ The assessment is to be conducted for 100 marks. The weightage shall be:
  - $\Box$  Project log book: 25%
  - Project implementation: 50%
     (10% for objectives, 25% for execution/proposal and 15% for presentation).
  - □ Project report: 25%
- □ While grading the student's performance using the student's project log, the following should be taken into account:
  - $\hfill\square$  Individual student's effort and commitment.
  - □ Originality and quality of the work produced by the individual student.
  - $\hfill\square$  Integration and co-operation with the work assigned.
  - $\Box$  The completeness of the log book.
- □ Assessment for project implementation:
  - □ Orientation to the community development.
  - □ Conducting a baseline assessment of development needs.
  - $\hfill\square$  Number of awareness programs and participants for each.
  - $\hfill\square$  Number of intervention programs and participants for each.
  - □ Number of follow-up programs and participants for each.
  - Developing short-term and mid-term action plans in consultation with local leadership and local government officers.
- □ Assessment for project presentation:
  - $\hfill\square$  Assessing the involvement in the project.
  - □ Presentation skills.
  - $\hfill\square$  Final outcome of the project.
- □ Assessment for project report.

Note: Final Evaluation of the project should be done by a three-member Committee

(Mentor shall be one member in the CIE committee).

Particulars	Percentage Contribution of total marks					
Work assessed by the Mentor based on log book	25					
Final evaluation by the Internal Three- member Committee [ Split up is given below]	50					
a. Establishing the Social relevance	20					
0 fworly (Objectives)						
b. Illustrating the execution process for the attainment of outcome	50					
c. Presentation	30					
Final Report	25					

24FSI	0600	ΔΟΤΙ	FICI	AT TN	TEII	٦r	L	Т	P	J	S	С	Ye: Intro	ar of luction	
271051	009		IEMI	CAL ]	ENGI	NEER	ING	1	0	2 (	<b>)</b>	3	2	202	24
Pream	ble:	In the	cont	ext of	incre	easing	appli	cati	ons	s of	da	ta	ar	alytics	s in the
proces	s ind	ustry,	, the	object	ive of	this c	ourse	is t	o ir	itro	du	ice	e to	ols, m	ethods,
and fi	rame	works	to	stude	nts. (	On su	ccess	ful	cor	npl	eti	on	0	f the o	course,
studen	ts w	vill be	abl	e ma	ster	variou	s tec	hnic	cs	tha	t v	wil	1 1	be use	ful for
analyz	ing 1	raw p	oroce	ss da	ta in	ito kn	owled	lge	an	d t	0	de	cis	sion er	nabling
Inform	ation	L.													
Prereq			^f	tom +10		mlation				~~ +	1 <u>a</u> a	~		lameti1	1 h a
able to	Uut	.come	<b>S:</b> AI		e com	pietioi	1 01 11		Jur	sei	ne	S	lua		I De
<b>CO 1</b> Explain data analysis and visualization.															
<b>CO 2</b> Explain the steps involved in implementing Principal Component Analysis.											nent				
<b>CO 3</b> Apply clustering techniques.															
CO 4	Uti	lize no	nline	ar an	proac	thes fo	r effec	tive	pr	oce	55	da	ita	analys	is
<b>CO 5</b> Apply various model learning approaches										101					
CO - PO MAPPING															
СО	<b>PO1</b>	PO2	PO3	PO4	<b>PO5</b>	<b>PO6</b>	PO7	PC	)8	PO	9 I	PO	1	PO11	PO12
											-	)			
<b>CO</b> 1	3	2			2										2
CO 2	3	2			2										2
CO 3	3	2			2										2
CO 4	3	2			2										2
CO 5	3	2			2										2
		A	ssess	ment	Patt	ern fo	r The	ory	CO	mpo	one	en	t		
				Cont	inuou	ıs Ass	essm	ent				г.	h	Somoo	tor
Bloo:	m's (	Catego	ory	Tools	5							E	iu xai	minati	011
				Tes	t1	Tes	t 2	Oth too	ler ols						
Remem	ber														
Unders	tand														
Apply															
Analyse	e														
Evalua	te														
Create															
			Asse	ssmei	nt Pa	ttern :	for La	b c	om	pon	en	t			
	Bl	loom'	s Cat	egory	7		Class	ntin	uo 1-	us /	As	se	SSI	nent 1	`ools
Domore	her			_ •			Class	wo	ГK					resti	
Lindore															
Appl	land														
Apply															

Analyse	
Evaluate	
Create	

# Mark Distribution of CIA

Course Structure [L-T-P-J]		Theory [L- T]			Practical [P]		Total
	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Mark s
1-0-2-0	5	10	20	_	25	40	100

Total Marks distribution								
Total Marks	CIA (Marks)	ESE (Marks)	<b>ESE Duration</b>					
100	100	-	-					
SYLLABUS								

#### MODULE I: Introduction to data analysis and visualization

Process data pre-processing, handling and regression Data error types: systematic errors, random errors, outliers; Data transformation; Data visualizations: histogram, heat map, tree map, scatter plots, spectral plots, regression models.

#### **MODULE I: Advanced Techniques in Process Data Analysis**

Dimensionality reduction and latent variable models with applications to fault detection and inferential modeling of processes Principal component analysis, factor analysis, canonical correlation analysis, partial least squares Classification with applications to process mode diagnosis k-nearest neighbour, naive Bayes, linear discriminants, support vector machine, decision trees and forests.

MODULE III: Advanced Process Mode Diagnosis

Clustering with applications to process mode diagnosis k-means, fuzzy c-means, possibilistic c-means, hierarchical clustering methods, mixture models.

MODULE IV: Nonlinear Approaches and Entropy in Process Data Analysis Overview of nonlinear approaches Kernel methods-kernel PCA, kernel SVM, neural nets-feed forward networks, Gaussian process A brief introduction to entropy and its applications to redundant process variable isolation: Shannon entropy, cross entropy, joint and conditional entropy, KL- divergence, mutual information

#### **MODULE V:Advanced Model Learning Techniques**

Model learning approaches Maximum likelihood, maximum a posteriori, Bayesian approaches; Expectation-Maximization- application to mixture models, back propagation- application to neural nets, ensemble learning: bootstrapping methods- application to decision trees, Model assessment and validation: BIC, k-fold cross validation, concept of model averaging

#### Text books

1. Bishop, C., "Pattern Recognition and Machine Learning",

Springer, 2008. Murphy, K., "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.

 Duda, R.O., Hart, P. E., and Stork, D.G., "Pattern Classification", John Wiley & Sons, 2005.

#### **Reference books**

1. Hastie, T., Robert Tibshirani, R., and Friedman, J., "The Elements of Statistical Learning:

- 2. Data Mining, Inference, and Prediction", Springer, 2009.
- 3. Runkler, T. A.,"Data Analytics Models and Algorithms for
- Intelligent Data Analysis", Springer, 2012
- 4. Also relevant research papers pertaining to the application of theory to chemical process systems.

COURSE CONTENTS AND LECTURE SCHEDULE				
NT -		No. of		
INO.		Hours		
MODULE 1 (5 hours)				
1 1		1		
1.1	Process Data Pre-Processing.			
12		1		
1.4	Handling And Regression Data Error Types.			
13		1		
1.5	Systematic Errors, Random Errors, Outliers.			
14		1		
1.4	Data Transformation; Data Visualizations.			
1.5	Histogram, Heat Map, Tree Map, Scatter Plots, Spectral	1		
-----	-----------------------------------------------------------	---		
	Plots, Regression Models.			
	<b>MODULE II (6 hours)</b>			
	Dimensionality Reduction And Latent Variable Models	1		
2.1	With Applications To Fault Detection and Inferential			
	Modeling Of			
	Processes Principal Component Analysis.			

2.2	Dimensionality Reduction And Latent Variable Models With	1
2.2	Applications To Fault Detection And Inferential Modeling	
	Of Processes Principal Component Analysis.	
2.3	Dimensionality Reduction And Latent Variable Models With	1
2.0	Applications To Fault Detection And Inferential Modeling	
	Of Processes Principal Component Analysis,	
	Dimensionality Reduction And Latent Variable Models	1
2.4	With Applications To Fault Detection And Inferential	
	Modeling Of	
	Processes Principal Component Analysis,	
	Canonical Correlation Analysis, Partial Least Squares,	1
2.5	Classification With Applications To Process Mode	
	Diagnosis K-Nearest Neighbor.	
2.6	Naive Bayes, Linear Discriminants, Decision Trees And	
	Forests.	
	<b>MODULE III (4 hours)</b>	
3.1	Clustering With Applications To Process Mode Diagnosis K-	1
	Means.	
3.2	Clustering With Applications To Process Mode Diagnosis K-	1
	Means.	
2.2	Fuzzy C-Means, Possibilistic C-Means, Hierarchical	1
3.3	Clustering Methods, Mixture Models.	
2.4	Fuzzy C-Means, Possibilistic C-Means, Hierarchical	1
3.4	Clustering Methods, Mixture Models.	
	<b>MODULE IV (4 hours)</b>	

4.1	Overview Of Nonlinear Approaches Kernel Methods- Kernel	1
	PCA, Kernel SVM, Neural Nets-Feed Forward Networks.	
4.2	Overview Of Nonlinear Approaches Kernel Methods- Kernel	1
	PCA, Kernel SVM, Neural Nets-Feed Forward Networks.	
4.3	Overview Of Nonlinear Approaches Kernel Methods- Kernel	1
	PCA, Kernel SVM, Neural Nets-Feed Forward Networks.	
4.4	A Brief Introduction To Entropy And Its Applications To	1
	Redundant Process Variable Isolation.	
	MODULE V (5 hours)	
	Model Learning Approaches Maximum Likelihood,	1
5.1	Maximum A Posteriori, Bayesian Approaches.	

5.2	Expectation-Maximization- Application To Mixture Models,	1
	Back Propagation-Application To Neural Nets.	
5.3	Ensemble Learning: Bootstrapping Methods.	1
5.4	Application To Decision Trees.	1
	Model Assessment And Validation: BIC, K-Fold	1
5.5	Cross Validation, Concept Of Model	
	Averaging.	

#### LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of	Experiment			
1	Data Analysis Pipeline	1	Data Analysis Mastery Lab: Unveiling Patterns			
2	Data Analysis Pipeline	1	through Pre-processing, Erro			
3	Dimensionality Reduction and Fault Detection	1	Unveiling Patterns through Dimensionality Reductio			
4	process mode diagnosis	1	Process Mode Diagnosis			
5	Kernel methods and neural networks,	1	through Clustering			

6	Entropy-based methods for	1	Exploring				
	variables	1	Nonlinear	Approaches			

	CO Assessment Sample Questions											
1	Explain the significance of data pre-processing in the context of regression analysis.											
2	Discuss the role of principal component analysis (PCA) in dimensionality reduction for process data.											
3	Demonstrate your understanding of clustering algorithms by explaining the key steps involved in implementing k-means and hierarchical clustering for process mode diagnosis.											
4	Describe your understanding of nonlinear approaches by explaining the key steps involved in implementing kernel PCA and kernel SVM for process data analysis.											
5	Detail the significance of model assessment and validation, outlining the steps involved in k-fold cross-validation and the concept of model averaging in improving predictive performance.											

# SIXTH SEMESTER PROFESSIONAL ELECTIVE-1

																							_	_								
24CHI	E614	614 A				AIR POLLUTIO MONITORING							L	T	F	•	J	S	С	In	Ye tro	ear odu	of ctio	on								
		AND CONTROL					3	0	0	)	0	3	3		2	024	ł															
Pream polluta course transp also gi methoo	<b>Preamble:</b> This course is introduced to understand the atmospheric pollutant's standards, regulations, emission sources and their fate. The course deals with the fundamentals of atmospheric stability, air pollutant transport, characteristics of emission source and their control methods. It also gives an overview of indoor air pollution sources and its remedial methods to control and develop indoor air quality profile.																															
Prereq	uisite:	: ]	Ni	1																												
<b>Course</b> able to	<b>Course Outcomes:</b> After the completion of the course the student will be able to																															
CO1	Defin	ıe	tl	he	e s	so	bu	irc	ce	es	, c	cla	ass	sifi	ïca	ati	ion	ns	ar	nd	ef	iec	ts	0	fa	air	po	ollu	itai	nts.		
CO 2	Describe the ambient air quality standards as well as sampling and analysis of air pollutants from emission sources.																															

- **CO 3** Summarize the concepts of atmospheric dispersion characteristics and nature based on lapse rate and inversion.
- **CO 4** Design equipments to control particulates and gaseous pollutants.
- **CO 5** Explain the indoor air pollution sources, measurements, standards and control methods.

	CO - PO MAPPING											
CO	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	PO11	PO12
										0		
<b>CO1</b>	3	3				3	3					3
CO 2	3	3				3	3	3				3
CO 3	3	3					3					2
CO 4	3	3	3				3	3				2
CO 5	3	3					3					3

#### **Assessment Pattern**

Bloom's Category	Continuou Tools	s Assessn	End Semester	
	Test1	Test 2	Other tools	Examination
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				

		Mark Di	stributio	n of CIA								
		٩ ٩		Theory []	S							
Course Struct [L-T-P	ture -J]	Attendanc	Assignmen t	Test-1	Test-2			Total Marl				
3-0-0-	0	5	15	10		10		40				
	Total Mark distribution											
Total Mark	s CIA	(Marks)	ES	SE (Marks)		E	SE Du	ration				
100		40		60			3 Hours					
End Semester Examination [ESE]: Pattern												
PATTERN	PAR	TA		PART B		ESE	Marks					
PATTERN1	Marks: =20 mar	stions, lestion 2 (2x10 ks)	2 quest from e of wh should Each q a max division Each c 8 Marks: Time: 3	ach modr ich 1 c be an uestion c imum of ns. juestion c marks. (5x8 = 40 hours	be gr ule, ques iswe: an h 2 carrie mar	out tion red. nave sub es	60					
	Total M	arks: 20	Total Ma marksl	arks: [5x8	= 4(	C						
		SY	LLABUS									
MODULE I: A	Air Qualit	y, Regul	lations a	nd Effec	t							

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution- Sources and classification of air pollutants-Effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards-Ambient and stack sampling and Analysis of Particulate and

Gaseous Pollutants. Air quality sensors.

**MODULE II: Atmospheric Dispersion of Air Pollutant** 

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability- Dry adiabatic lapse rate derivation, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories-Dispersion models, Plume Rise- Numerical Problems.

#### **MODULE III: Control of Particulate Contaminants**

Gas Particle Interaction – Working principle, Design and performance equations of Gravity Separators, Centrifugal separators, Fabric filters, Particulate Scrubbers, Electrostatic Precipitators–Operational Considerations- Factors affecting Selection of Control Equipment.

#### **MODULE IV: Control of Gaseous Contaminants**

Working principle, design and performance equations of absorption, Adsorption, condensation, Incineration, Bio scrubbers, Venturi scrubber- Bio filters – Process control and Monitoring –Operational Considerations- Factors affecting Selection of Control Equipment–CO2 capturing, Hydrocarbon removal.

#### MODULE V: Indoor Air Quality Management

Sources types and control of indoor air pollutants, sick building syndrome types – HVAC system, IAQ issues and impacts on occupants—Developing an IAQ profile-Diagnose IAQ problem, Control-Quantification and Measurement.

#### Text books

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 2. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995.
- 3. Nicholas P. Cheremisinoff, Handbook of Air Pollution Prevention and

Control, Butterworth and Heinemann, Elsevier Science (USA), 2002.

Refer	ence books									
1. (	1. C. S. Rao, Environmental Pollution Control Engineering, Wiley									
I	Eastern Ltd, Delhi.									
2. Anjaneyulu. Y, Air Pollution and Control Technologies, Allied										
I	Publishers (P) Ltd., India, 2002.									
3. I	3. David H.F. Liu, Bela G. Liptak, Air Pollution, Lweis Publishers, 2000.									
4. <i>A</i>	Arthur C.Stern, Air Pollution (Vol.I – Vol.VIII), Academic	e Press,								
5 1	Navne T Davis Air Pollution Engineering Manual John	n Wiley &								
	Sons Inc. 2000									
	COURSE CONTENTS AND LECTURE SCHEDULE									
		No. of								
No.		Hours								
	MODULE 1 (7 Hours)									
	Structure and composition of Atmosphere – Definition	1								
1.1	Scope	1								
	and Scales of Air Pollution									
		1								
1.2	Sources and classification of air pollutants									
13	Effect on human health, vegetation, animals, property,	1								
1.5	aesthetic value and visibility									
1 /	Effect on human health, vegetation, animals, property,	1								
1.4	aesthetic value and visibility									
1.5	Ambient Air Quality and Emission standards	1								
16	Ambient and stack sampling and Analysis of	1								
1.0	Particulate and									
	Gaseous Pollutants.									
1.7	Air quality sensors	1								
	MODULE II (7 Hours)									
	Effects of meteorology on Air Pollution -	1								
2.1	Fundamentals.	-								
	Atmospheric stability									
		1								
2.2	Dry adiabatic lapse rate derivation									
2.3	Inversion, Wind profiles and stack plume patterns	1								
2.4	Inversion, Wind profiles and stack plume patterns									
0 5	Atmospheric Diffusion Theories Discoursing and 11	1								
2.5	Aunospheric Diffusion Theories– Dispersion models									

2.6	Atmospheric Diffusion Theories- Dispersion models	1
2.7	Plume Rise-Numerical Problems.	1
	MODULE III (8 Hours)	
3.1	Gas Particle Interaction – Working principle	1
3.2	Design and performance equations of Gravity Separators	1
3.3	Centrifugal separators. Theory and numerical problem	1
3.4	Centrifugal separators. Theory and numerical problem	1
3.5	Fabric filters	1
3.6	Particulate Scrubbers	1
3.7	Electrostatic Precipitators –Operational Considerations	1
3.8	Factors affecting Selection of Control Equipment	1
	MODULE IV (7 Hours)	
4.1	Working principle, Design and performance equations of absorption, Adsorption	1
4.2	Condensation, Incineration	1
4.3	Bio scrubbers	1

4.4	Venturi scrubber	1
4.5	Bio filters – Process control and Monitoring – Operational	1
	Considerations	
4.6	Factors affecting Selection of Control Equipment	1
4.7	CO2 capturing, Hydrocarbon removal.	1
	MODULE V (7 Hours)	
5.1	Sources types and control of indoor air pollutants	1
5.2	Sick building syndrome, types	1

5.3	HVAC system.	1
5.4	IAQ issues and impacts on occupants	1
5.5	Developing an IAQ profile	1
5.6	Diagnose IAQ problem	1
5.7	Control-Quantification and Measurement	1

## **CO Assessment Sample Questions**

1	List the sources of air pollution. Classify the sources of air pollution based on pollutant generation (Primary & Secondary) and pollutant types (gaseous, particulate dust etc.) with suitable examples.
2	List and explain the NAAQ standards and its importance.
3	Derive the expression for environmental lapse rate and dry adiabatic lapse rate.
4	A multi-tray settling chamber handles 6 m3/s of air at 20 °C. There are 8 trays including the bottom surface spaced 0.25 m apart. The chamber is 4 m long and 1 m wide. For particles of density 2000 kg/m3 and sizes (a) 70 $\mu$ m and (b) 25 $\mu$ m, calculate residence time (t), the distance settled (h) and the efficiency of collection ( $\eta$ ). Is the tray spacing sufficient to collect all the particles of each size? Assume laminar flow. Given, $\mu$ g at 20 °C = 1.81×10-5 kg/m-s, kinematic viscosity =1.51×10-5 m2/s.
5	<ul><li>(a) Explain the influence of HVAC system in indoor air quality depletion.</li><li>(b) Explain the sources and impact of radon and molds in indoor air quality depletion.</li></ul>

24CHE624 FIRE ENGIN		F	IRE	E SAFETY		L	Т	Р	J	S	С	Ye: Intro	ar of duction		
		NEERING			3	0	0	0	3	3	20	24			
Pream	<b>ble:</b> Fi	ire s	afety	in cl	nemio	cal pr	ocess	s pla	nts	req	uire	es a	spe	cialize	d focus
due to	o uniqu	le c	halle	nges	pose	ed by	han	dling	g ar	nd p	proc	ess	ing	of haz	ardous
mater	ials. T	his	cour	se is	inte	nded	to i	mpa	art i	kno	wlee	dge	on	physic	cs and
chemi	stry of	fire,	fire	prev	rentio	n teo	chniq	ues,	fir	e d	etec	ctior	ı aı	nd con	trol in
proces	s indu	strie	es. It	also	outli	nes t	he el	eme	nts	of e	eme	rgei	ıcy	planni	ng and
prepar	redness	s for	a fi	re ind	ciden	t.									
Preree	quisite	: Nil													
Cours	e Outo	come	es: A	fter t	he co	omple	etion	of th	ne c	our	se t	he s	stud	lent wi	ll be
able t	C														
<b>CO1</b>	Expla	in pl	nysio	es an	d che	emist	ry of	fire.							
CO2	Sugge	st sı tries	uitat	ole teo	chnic	lues	to pro	even	t fir	e ir	ı ch	emi	cal	proces	S
CO3	Explai alarm	n th	ne wo	orkinį	g prii	nciple	e of c	liffer	rent	typ	es	of fi	ire (	detecto	rs and
	syster occup	n an ancy	d pla 7.	an an	ıd dis	stribu	ite th	lem	in t	ouilo	ling	gs o	f dif	ferent	
<b>CO4</b>	Interp exting	ret t uish	he co ants.	oncep	ot of f	fire ez	xting	aish	mer	nt w	ith	diffe	eren	t	
<b>CO</b> 5	Describe the elements of emergency planning and preparedness for														
	a tire														
	incident.														
<u> </u>	PO1	PO	ΡO	DO4	POS	PO6		DC	19	D	סר	DO	10	<b>DO11</b>	PO12
	101	2	3	104	100	100	107	1.		1 \		10	10	1011	1012
CO 1	3	2				2						2	2		2
CO 2	3	2				2						2	2		2
CO 3	3	2				2						2	2		2
CO 4	3	2				2						2	2		2
CO 5	3	2				2						2	2		2
					Ass	essm	ent i	Patt	ern						
				Con	tinu	ous A Too	Asses Is	ssmo	ent			En	4 S	emest	er
Bloom's Category		Tes	st1	Те	st	Oth	ıer	Examination					n		
						2		too	bis						
Kemember							1								
Understand						]									
Apply															
Analy	se														
Evalu	ate														
Create															

			Mark Di	stributio	n of CIA				
			ð		Theory	[L- T	l		KS
Course Strue [L-T-	cture P-J]	2	Attendanc	Assignmen t	Test-1	Test-2			Total Marl
3-0-0	-0		5	15	10		10		40
			Total M	lark distr	ibution				
Total Marl	KS	CIA	(Marks)	ES	E (Marks	)	ES	E D	uration
100			40		60			3 ho	urs
End Semeste	r Ex	amina	tion [ES	E]: Patte	rn				
PATTERN	PATTERN PART A PART B					ES Ma	E .rks		
PATTERN1 PATTERN1 Marks: (2: marks)			ions, stion marks x10 =20	2 ques given f modul questi answe questi maxim divisio Each o 8 mar Marks marks	stions wil from each from each on shoul on shoul on can h num of 2 ns. question ks. : (5x8 = 4 ) Time: 3	l be n whic d be h ave a sub carri	h 1 u es		60
	Total M marks	Marks: [5: ]	x8 = 4	40					
				1					

Elements of fire- Classes of fire- NFPA diamond- Principles of fire spread-Measures of flammability: Flash point, Fire point, Autoignition temperature, LFL and UFL- Flammability limit dependence on temperature and pressure-Estimating flammability limits-Flammability diagram: Construction and application-Products of combustion: Flame, heat, smoke, fire gases-Development of fire- incipient, smoldering, flame and heat stages-Special kinds of combustion-Flash fire, Pool fire, Jet fire, Deep seated fire, Spoil over, Boil over, Slope over, Dust explosion, BLEVE, UVCE.

#### **MODULE II: Fire Prevention Techniques**

Control of Ignition Sources: Electrical Area Classification -Personal ignition sources- Hot work- Static Electricity: Fundamentals, Electrostatic discharges, streaming current, controlling of static electricity: Methods to prevent electrostatic ignitions.

Controlling oxygen levels: Limiting oxygen concentration-Inerting-Vacuum and pressure purging-Advantages and Disadvantages of the Various Pressure and Vacuum purging Procedures.

#### MODULE III: Fire detection and fire alarm systems

Fire detection- Need and importance of automatic fire detection system, principle of detection, classification of detectors; Heat detectors -Smoke detectors- Flame detectors -Flammable gas detection.

Fire alarm system- classification of alarm system-Automatic alarm system-various components and modules; Addressable and non-addressable system.

#### **MODULE IV: Principles of Fire Extinguishments**

Basic concept of firefighting with water, carbon dioxide, powders, foams, halons; Need for halon replacement and halon substitutes.

Description, working principle, method of operation of different types of portable fire extinguishers-water type, foam type, dry powder type, CO2 type. Automatic water sprinkler system-Total flooding system.

#### **MODULE V: Fire Emergency Response**

Emergency management: Laws regulations and industry codes of practice-Fire risk assessment- Resources-Planning-Training drills and exercises.

Human factors in emergencies: Human behaviour and fire-Basics of egress design- Techniques of crowd management-Strategies for occupant evacuation during emergencies.

#### Text books

- 1. Daniel A Crowl & Joseph F Louvar, Chemical Process Safety, Second Edition, Prentice-Hall.
- 2. Barendra Mohan Sen. Fire protection and prevention the essential handbook, UBS publishers and Dist., New Delhi. (2013).

#### **Reference books**

- 1. Daniel E. Della-Giustina, Fire Safety Management Handbook, Third Edition, CRC press.
- 2. S.K Biswas & Umesh Matur, Fundamentals of Process Safety Engineering, CRC Press.
- Rasbash D., Ramachandran G., Kandola B., Watts, J., Law M., Evaluation of Fire Safety, John Wiley & Sons Ltd., England, (2004).
- 4. NFPA Fire protection handbook
- 5. SFPE Handbook of Fire Protection Engineering, Fifth Edition, Springer. COURSE CONTENTS AND LECTURE SCHEDULE

No		No. of
110.		Hours
	<b>MODULE 1 (8 hours)</b>	
1.1	Elements of fire- Classes of fire- NFPA diamond- Principles of fire spread.	1
1.2	Measures of flammability: Flash point, Fire point, Autoignition	1
	temperature.	
1.3	LFL and UFLFlammability limit dependence on temperature and pressure- Estimating flammability limits.	1
1.4	Flammability diagram: Construction and application.	1
1.5	Flammability diagram: Construction and application.	1
1.6	Products of combustion: Flame, heat, smoke, fire gases,Development of fire- incipient, smoldering, flame and heat stages.	1
1.7	Special kinds of combustion-Flash fire, Pool fire, Jet fire.	1
1.8	Deep seated fire, Spoil over, Boil over, Slope over, Dust explosion, BLEVE, UVCE.	1
	MODULE II (8 hours)	
2.1	Control of Ignition Sources: Electrical Area Classification -	1
	Personal ignition sources-Hot work.	
2.2	Static Electricity: Fundamentals,Electrostatic discharges,streaming current.	1
2.3	Controlling of static electricity: Methods to prevent electrostatic ignitions.	1

2.4	Controlling of static electricity: Methods to prevent	1
2.1	electrostatic ignitions.	
2.5	Controlling oxygen levels: Limiting oxygen	1
	concentration-	
	Inerting.	
0.6		1
2.0	Vacuum purging.	
0.7		1
2.1	Pressure purging.	
0.0	Advantages and Disadvantages of the Various	1
2.0	Pressure and	
	Vacuum purging Procedures.	
	MODULE III (7 hours)	·
2 1	Fire detection- Need and importance of automatic fire	1
3.1	detection system, principle of detection.	
2.0	classification of detectors; Heat detectors -Smoke	1
3.2	detectors-	
	Flame detectors -Flammable gas detection.	

3.3	Smoke detectors.	1
3.4	Flame detectors -Flammable gas detection.	1
3.5	Fire alarm system- classification of alarm system.	1
3.6	Automatic alarm system-various components and modules.	1
3.7	Addressable and non-addressable system.	1
	MODULE IV (7 hours)	
4.1	Basic concept of firefighting with water, carbon dioxide, powders, foams, halons; Need for halon replacement and halon substitutes.	1
4.2	Basic concept of firefighting with water, carbon dioxide, powders, foams, halons; Need for halon replacement and halon substitutes.	1
4.3	Description, working principle, method of operation of different types of portable fire extinguishers-water type, foam type.	1

	Description, working principle, method of operation of	1
4.4	different types of portable fire extinguishers- dry	
	powder type,	
	CO2 type.	
4.5	Automatic water aprinkler system Dry pipe and wet	1
	pipe.	
4.6	Automatic water sprinkler system-Preaction and deluge systems.	1
4.7	Total flooding avatam	1
	MODULE V (5 nours)	
5.1	Emergency management: Laws regulations and industry codes	1
	of practice.	
5.2	Fire risk assessment- Resources-Planning-Training drills and	1
	exercises.	
5.3		1
	Human factors in emergencies: Human behaviour and fire.	
54		1
0.1	Basics of egress design.	
5.5	Techniques of crowd management-Strategies for occupant	1
	evacuation during emergencies.	

# **CO Assessment Sample Questions**

3	Distinguish between addressable and non-addressable alarm systems.
4	Prepare a table of suitability of various types of fire extinguishers for different classes of fire.
5	Discuss the factors that govern the effectiveness of emergency response in case of a fire incident.

24CHE634	PROCESS MODELLING AND SIMULATION	L	Т	Р	J	S	С	Year of Introductio n
		3	0	0	0	3	3	2024

**Preamble:** Modelling and simulation are important tools for engineers and scientists to have better understanding about the behavior of chemical processes and plants. They are very useful to design, scale up and optimize pieces of equipment and chemical plants for process control, troubleshooting, operational fault detection, training of operators and engineers, costing and operational planning etc. The course deals with the fundamentals of modelling and simulation, models of reactors, heat transfer equipments and separation processes.

#### Prerequisite: Nil

**Course Outcomes:** After the completion of the course the student will be able to

<b>CO1</b>	Comprehend	the	fundamental	laws	and	thermodynamic principles	
	required for						

formulating a mathematical model.

**CO2** Identify steps in building mathematical models for chemical processes

**CO3** Develop models for complex chemical processes using shell balance approach.

**CO4** Solve built-in models for chemical processes.

**CO5** Develop models for complex chemical processes using UNISIM.

	CO - PO MAPPING											
СО	<b>PO1</b>	PO 2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3							2
CO2	3	3	3	2	3							2
CO3	3	3	3	2	3							2
<b>CO4</b>	3	3	3	2	3	3						2
CO5	3	3	3	2	3							2

#### Assessment Pattern

Bloom's Category	Continuou Tools	s Assessr	End	
	Test1	Test2	Other tools	Semester Examinatio n
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				

			Mark Di	stributio	on of CIA				
			ð		Theory	[L- T]			S
Course Structure [L-T-P-J]				Assignmen t	Test-1	Test-1 Test-2			
3-0-	0-0		5	15	10		10		40
			Total M	lark dist	ribution				
Total Ma	rks	CIA	(Marks)	E	SE (Marks	)	ESI	E Du	ration
100			40		60		3	HOU	RS
	<u>En</u>	d Sem	lester Ex	<b>xaminat</b> i	ion [ESE]:	Pat	tern		
PATTERN		PART	Α		PART B			ESE	Mark
PATTERN 1	10 each ques Marl marl	Questi stion c 2 ks: (2x =2 ks)	ons, arries marks x10 0	2 ques given f modul questi- answe questi- divisio Each o marks	tions will from each e, out of w on should red. Each on can ha um of 2 s ns. question c (5x8 = 40	be vhich be ve a ub arrie mar	s 8 ks)	6	0
	To	tal Ma	rks: 20	Time: 3 Total M	3 hours arks: [5x8	= 40	)		
				marksi					

Introduction to process modeling, needs of model and their classification, Model building, Precautions in model building, Principles of model formulation, Fundamental laws, Review of shell balance approach, Models based on thermodynamic principles, Concept of the degree of freedom analysis, Concept of equilibrium and kinetics

#### **MODULE II: Models of Reactors**

Batch reactor model, Semi Batch reactor, Interacting and Non-Interacting Tanks, two heated tanks, Gas phase pressurized CSTR, non-isothermal CSTR: Perfectly mixed cooling jacket, Plug flow cooling jacket, Lumped Jacket Model, Lumped metal model, Reactor model with mass transfer, Bioreactor models. Fluidized bed reactor model, Trickle Bed Reactor Model.

#### **MODULE III: Models of Heat Transfer Equipment**

One and two-dimensional heat conduction, Numerical solution of one dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method.

#### **MODULE IV: Models of Separation Processes**

Development of detailed Single-Component Vaporizer, Development of detailed mathematical models of multicomponent flash drum, Binary Batch & Continuous Distillation Column, Multicomponent non-ideal distillation column, Batch distillation with holdup, Activity coefficient model (Wilson, NRTL, UNIQUAC, UNIFAC), Equation of State Models (RK, SRK, PR).

#### **MODULE V: Simulation**

Introduction to process simulation, Tools of simulation- Features, Advantages and limitations; Approaches of simulation: Modular approach and Equation solving approach, Flowsheeting, Introduction to dynamic simulation and process

#### optimization.

#### Text books

- 1. Franks R.G.E., Mathematical Modeling in Chemical Engineering, John Wiley
- 2. Luyben W.L., Process Modeling, Simulation and Control for Chemical Engineers, McGraw Hill International Edition
- 3. Amiya K.Jana, Computer Process Modelling and Computer Simulation,

Prentice Hall of India.

#### **Reference books**

- 1. Biquette W.B., Process Dynamics Modeling Analysis and Simulation, Prentice Hall of India.
- 2. John Ingham et.al., Chemical Engineering Dynamics Modeling with PC

#### Simulation, VCH Publishers.

**COURSE CONTENTS AND LECTURE SCHEDULE** 

No.	No. of
	Hours

	MODULE 1 (8 hours)	
1.1	Introduction to process modeling, needs of model and their	1
	classification	
1.2	Model building, Precautions in model building	1
1.3	Principles of model formulation	1
1.4	Fundamental laws, Review of shell balance approach	1
1.5	Fundamental laws, Review of shell balance approach	1

1.6	Models based on thermodynamic principles	1				
1.7	Concept of the degree of freedom analysis, Concept	1				
	of					
	equilibrium and kinetics					
1.8	Concept of the degree of freedom analysis, Concept of	1				
	equilibrium and kinetics					
	MODULE II (8 hours)					
2.1	Batch reactor model, Semi Batch reactor	1				
2.2	Batch reactor model, Semi Batch reactor 1					
2.3	Interacting and Non nteracting tanks, two heated tanks					
2.4	Gas phase pressurized CSTR, non-isothermal CSTR: 1 Perfectly					
2.5	Gas phase pressurized CSTR, non-isothermal CSTR:       1         Perfectly       1					
2.6	Plug flow cooling jacket, Lumped Jacket Model	1				
2.7	Lumped metal model, Reactor model with mass transfer, Bioreactor models					
2.8	Fluidized bed reactor model, Trickle Bed Reactor Model.					
	MODULE III (6 hours)	·				

3.1	One- and Two-dimensional heat conduction	1
3.2	Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method.	1
3.3	Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method	1
3.4	Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method	1
3.5	Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method.	1
3.6	Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method.	1

Г

MODULE IV (5 hours)					
4.1	Development of detailed Single-ComponentVaporizer, Development of detailed mathematical models of multicomponent flash drum	1			
4.2	Binary Batch & Continuous Distillation Column, Multicomponent non-ideal distillation column	1			
4.3	Batch distillation with holdup, Activity coefficient model (Wilson, NRTL, UNIQUAC, UNIFAC), Equation of State Models (RK, SRK, PR).	1			
4.4	Batch distillation with holdup, Activity coefficient model(Wilson, NRTL, UNIQUAC, UNIFAC), Equation of State Models (RK, SRK, PR).	1			
4.5	Batch distillation with holdup, Activity coefficient model (Wilson, NRTL, UNIQUAC, UNIFAC), Equation of State Models (RK, SRK, PR).	1			
	MODULE V (9 hours)				
5.1	Introduction to process simulation, Tools of simulation-Features, Advantages and limitations	1			
5.2	Introduction to process simulation, Tools of simulation-Features, Advantages and limitations	1			
5.3	Approaches of simulation: Modular approach and Equation solving approach	1			

5.4	Approaches of simulation: Modular approach and Equation solving approach	1
5.5	Approaches of simulation: Modular approach and Equation solving approach	1
5.6	Flow sheeting, Introduction to dynamic simulation and process optimization.	1
5.7	Flow sheeting, Introduction to dynamic simulation and process optimization	1
5.8	Introduction to dynamic simulation and process optimization.	1
5.9	Introduction to dynamic simulation and process optimization	1

	CO Assessment Sample Questions					
1	Explain principles of formulation.					
2	Explain Transport equations and equations of continuity.					
3	Develop the model of one-dimensional transient heat conduction in a rectangular slab.					
4	Develop the model of jacketed tubular reactor.					
5	Develop the model of gravity flow tank using UNISIM.					
6	Explain the need for simulation softwares.					

24CH	E644	OII	L & N ENG	ATUF	RAL G RING	AS		L 3	Т 0	Р 0	J 0	S 3	С 3	Yea Introd 20	ur of luction 24		
Pream	<b>Preamble:</b> This course introduces the fundamentals of oil and natural gas													ral gas			
engin	engineering including the origin and formation of Petroleum and petroleum																
geolo	eology. Students will get understanding about the various exploration																
techn	chniques and well logging methods. The course provides an insight to oil																
well c	rilling	and i	ts con	npletio	on.												
Prere	quisit	e: Nil															
Cours	se Out	come	s: Aft	er the	comp	letion	of the	e co	urs	se	the	e si	tud	lent wil	l be		
	0 Evol	ain th	e fund	lomer	tals c	fnetr	oleum	ae	010	m	01	4	ovr	Ioratio	n		
COI	Sum	moria	c the 1			n peti	drill o	nd	010 nrc	gy du	ai		LAL LAL	ohnia	11.		
<b>CO2</b>	pract	ticed i	n n	Dasics	01 108	ging,	ui ili a	na	pre	Jui	ici	101	ιιe	ennqu	les		
	the o	il well	s.														
CO3	Apply	y the f	funda	menta	al con	cepts	in the	oil	an	d g	gas	s re	ese	rvoir			
	engir	neerin	g.	-													
<b>CO4</b>	Outli	ne the	e geo	logy, d	origin,	resei	voir c	har	act	ter	ist	ics	and	d production			
	techr	ology	of un	conve	ntiona	al oil.											
<b>CO</b> 5	Discu	iss th	e geol	logy, c	origin,	reser	voir cl	nara	act	eri	sti	cs	an	d prod	uction		
	techr	ology	of un	conve	ntiona	al gase	es.										
~~~					CO - 1		APPIN	G			~ ~						
CO	PO1	PO2	PO3	PO4	P05	P06	PO 7	PC	98	P	99	РС 0)1	PO11	PO12		
CO1	3					2	2								2		
CO2	3					2	2								2		
CO3	3					2	2								2		
CO4	3					2	2								2		
CO 5	3					2	2								2		

Bloom's Category	Continuou Tools	is Assessn	End Semester	
	Test1	Test 2	Other tools	Examination
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				
	·	·	· · · · · ·	

Mark Distribution of CIA

			e)			S			
Course Str [L-1	ucture [-P-J]	•	Attendanc	Assignmen t Test-1		Test-2	Test-2		Total Marl
3-0	-0-0		5	15	10		10		40
			Total M	lark distr	ibution				
Total Ma	rbe	CIA	(Marke)	FS	F (Marke)		F	8F	Duration
100 100	11 N 3		40	20	60		E	эе З	Hours
	En	d Sem	ester Ex	aminatio	on [ESE]:	Pat	tern	0	liouis
PATTERN		PART	Α		PART B			F	ESE Marks
PATTERN 1	10 (each ques mar Mar mar	Questic stion c ks ks: (2x ks)	ons, arries 2 10 =20	2 quest from ea of whi should Each qu a maxi division Each q 8 Marks: Time: 3	ions will h ach modu ich 1 q be an uestion ca imum of is. uestion ca marks. (5x8 = 40 hours	iven out tion red. nave sub es		60	
	То	tal Ma	rks: 20	Total Ma marksl	rks: [5x8	= 4()		
			SY	LLABUS					
MODULE I	: Fun	damen	tals of p	petroleun	n geology	7 an	d exp	lor	ation
Introduction of oil and Definition, of Shale of Properties	n, orig natura Chara il, Res	gin, for al gas. acterist servoir	mation, Source ics, Cla	geological Rocks, Ro ssification	occurren eservoir F n and no	ice a Rock ome	and ch s, and nclatu	nar d C ure,	acteristics Cap rocks: , Concept

Properties, Hydrocarbon migration, Petroleum Exploration. **MODULE II: Introduction to well drilling and production** Well logging: Direct Methods: Mud logging- coring – conventional and sidewall coring – Core analysis. Concepts of well logging: Logging Terminology-Borehole environment- Major components of well logging unit and logging setup-Classification of well logging methods. Well Drilling: cable tool drilling, rotary drilling, types of drilling units, and types of production units. Well completion, Production methods.

MODULE III: Fundamentals of Oil and Gas Reservoir Engineering

Some basic concepts in reservoir engineering: Calculation of hydrocarbon volumes- Fluid pressure regimes- Oil recovery and recovery factor-Volumetric gas reservoir engineering- Gas material balance and recovery factor-Hydrocarbon phase behaviour. Reservoir deliverability: Flow regimes, IPR for various types of wells, well bore performance, well deliverability, well decline analysis.

MODULE IV: Non-Conventional Oil

Shale oil: Introduction, geology, origin, types of oil shales, and occurrence worldwide, Kerogen and its composition, production technologies. Tar Sand: Introduction, geology, origin and occurrence worldwide, composition, resources, production technologies. Heavy oil: Introduction, geology, origin and occurrence worldwide, composition and production technologies.

MODULE V: Non-conventional gas

Introduction, present status, formation and properties of coal bed methane, natural gas hydrate, tight gas sands, shale gas. Shale Gas: Exploration, Production-Drilling and completion. Natural Gas Hydrate: Concepts and Structures, Evaluation and

Prediction, Production Techniques.

Text books

- 1. Elements of Petroleum Geology, Richard, C. Selley, Elsevier, 1997.
- Dake L. P., "Fundamentals of Reservoir Engineering", Elsevier Science B. V, 1978.
- Manjooran S. K. B., "Modern Petroleum Chemistry", Kannatheri Publication, 2004.
- Beggs D. H., "Gas Production Operations", OGCI Publications, 1984.

Refe	ence books	
1.	Petroleum Production Engineering: A Computer Assisted BoyunGuo,William C. Lyons, Ali Ghalambor, Elesevier Technology Books, 2007	Approach, Science &
2.	James G. Speight, "Shale Oil Production Proces Professional	ses", Gulf
3.	Publishing,2012 Carrol John, "Natural Gas Hydrates: A guide for enginee Professional	ers", Gulf
А	Publishing, 2003	tion
4.	Appraisal, and Development", Gulf Professional Publish	$\frac{1000}{100}$
	COURSE CONTENTS AND LECTURE SCHEDULE	;
N T		No. of
No.		Hours
	MODULE 1 (5 hours)	
1.1	Introduction, origin, formation, geological occurrence and	1
	characteristics of oil and natural gas.	
1.2	Source Rocks, Reservoir Rocks, and Cap rocks: Definition.	1
	Characteristics.	
1.3	Source Rocks, Reservoir Rocks, and Cap rocks: Classification	1
	and nomenclature.	
1.4	Concept of Shale oil, Reservoir Properties.	1
1.5	Hydrocarbon migration, Petroleum Exploration.	1
	MODULE II (6 hours)	
2.1	Well logging: Direct Methods: Mud logging- coring – conventional and sidewall coring – Core analysis.	1
2.2	Concepts of well logging: Logging Terminology- Borehole	1
2.3	Major components of well logging unit and logging setup-	1
	Classification of well logging methods.	
2.4	Well Drilling: cable tool drilling, rotary drilling, types of drilling	
	units, and types of production units.	
2.5	drilling drilling	1

	units, and types of production units.								
2.6	Well completion, Production methods	1							
MODULE III (7 hours)									
3.1	Some basic concepts in reservoir engineering: Calculation of	1							
	hydrocarbon volumes-								
3.2	Some basic concepts in reservoir engineering: Fluid pressure	1							
	regimes								
3.3	Oil recovery and recovery factor	1							
3.4	Volumetric gas reservoir engineering- Gas material balance and	1							
	recovery factor								
3.5	Hydrocarbon phase behaviour. Reservoir deliverability: Flow	1							
	regimes								
3.6	IPR for various types of wells, well bore performance	1							
3.7	Well deliverability, well decline analysis	1							
	MODULE IV (9 hours)								
4.1	Shale oil: Introduction, geology, origin, types of oil shales, and	1							
	occurrence worldwide,								
	Shale oil: Introduction, geology, origin, types of oil								

4.2	shales, and	1
	occurrence worldwide,	
4.3	Kerogen and its composition, production technologies.	1
4.4	Tar Sand: Introduction, geology	1
4.5	Tar Sand: origin and occurrence worldwide	1
4.6	Tar Sand: composition, resources, production technologies.	1
4.7	Heavy oil: Introduction, geology	1
4.8	Heavy oil: origin and occurrence worldwide	1

4.9	Heavy oil: composition and production technologies.	1								
	MODULE V (9 hours)									
5.1	Introduction, present status, formation and properties of coal	1								
	bed methane									
5.2	Introduction, present status, formation and properties natural	1								
	gas hydrate.									
5.3	Introduction, present status, formation and properties tight gas	1								
	sands.									
5.4	Introduction, present status, formation and properties shale	1								
	gas.									
5.5	Shale Gas: Exploration, Production-Drilling and completion.	1								
5.6	Shale Gas: Exploration, Production-Drilling and completion.	1								
5.7	Natural Gas Hydrate: Concepts and Structures	1								
5.8	Natural Gas Hydrate: Evaluation and Prediction	1								
5.9	Natural Gas Hydrate: Production Techniques	1								

	CO Assessment Sample Questions
1	Explain magnetic and seismic method for the exploration of petroleum.

2	Explain main types of logs used in well logging.
3	Suppose that a vertical well produces 0.71 specific gravity gas through a 2.875 –in tubing set to the top of a gas reservoir at a depth of 10,000 ft. At tubing head, the pressure is 800 psia and the temperature is 150 °F, whereas the bottom-hole temperature is 200 °F. The relative roughness of tubing is about 0.0006. Calculate the expected gas production rate of the well using the following data for IPR: Reservoir pressure = 2,000 psia, IPR model parameter, C = 0.1 Mscf/d-psi ²ⁿ , IPR model parameter, n = 0.8

4	Explain the formation of tar sand and outline the composition of oil shales.
5	Differentiate depressurization and thermal stimulation for the production of gas hydrates.

									T	P	J	S	С	Ye	ar of		
24CHE654				CORROSION ENGINEERING				3	0	0	0	3	3	1111	2024		
Prean	able:	This	course	e is in	itende	d to i	mpar	t kn	ow	wledge on the importance of							
corrosion and its prevention in process industries. Different forms of corrosi										corrosion							
and corrosion testing methods are discussed. This course also gives an overview											n overview						
about	about its control techniques.																
Prerequisite: Nil																	
Course Outcomes: After the completion of the course the student will be able to												l be able					
CO1	Sun	nmariz	e the	prino	ciples	of co	orrosi	on c	ons	side	ering	g el	lectro	oche	emical,		
	envi	ironm	ental,	metal	lurgic	al and	1 oth	er as	spe	cts	•						
CO2	Ider	ntify a	nd ex	plain t	he dif	ferent	type	s of	cor	ros	sion	•					
CO3	Exp	lain v	arious	s corro	osion (testin	g and	l con	tro	1 te	echr	iqu	ies.				
CO4	Sele mat	ct the erials	appro and ir	opriate ndustr	e corro ries.	sion c	ontro	ol tec	hn	iqu	e fo	r di	ffere	nt e	ngineering		
CO5	Ider	ntify co	orrosio	on-rela	ated pr	roblen	ıs an	d pr	opc	se	viat	ole	solut	tion	s.		
					CO	- PO	MAPI	PING									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	' PC	28	P)9	PO	10	Р	PO12		
														0 1 1			
CO1	3	3					3								2		
CO2	3	3				2	2								2		
CO3	3	3				1	1								2		
CO4	3	3				1	1								2		
CO 5	3	3				2	3								2		
					Asses	ssmen	it Pa	tter	n								
				Conti	inuou	s Ass	essm	ent			1	End	1 Set	mes	ter		
Blo	om's	Categ	gory	Tools	; , , , ,			0.1			-	Exa	amir	nati	on		
				Tes	stl	Tes	st 2	Oth	ler								
Remer	nher						1	ιοι	112								
Under	stand	1]										
Apply	Stuff	•]										
Analy	se						-			-				·			
Evalua	ate																
Create	2																
	-									I							

Mark Distribution of CIA										
	Ð		S							
Course Structure [L-T-P-J]	Attendanc	Assignment	Test-1	Test-2	Total Mark					
3-0-0-0	5	15	10	10	40					

Total Mark distribution					
Total Marks		CIA (Marks)	ESE (Marks)	E	SE Duration
100		40	60		3 hours
	En	d Semester Ez	xamination [ESE]: Pat	<u>tern</u>	
PATTERN		PART A	PART B		ESE Marks
PATTERN 1	10 (each quest Mark mark	Questions, tion carries 2 marks s: (2x10 =20 s) tal Marks: 20	 2 questions will be a from each module, or which 1 question ships be answered. If question can have maximum of 2 divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Total Marks: [5x8 = 40 marks] 	given ut of lould Each e a sub es es	60
SYLLABUS					

MODULE I: Definition and importance of corrosion

Definition and importance of corrosion, Principles of corrosion phenomenon, Corrosion rate expressions, Electrochemical aspects, Environmental effects, Metallurgical and other aspects.

MODULE II: Different forms of corrosion

Different forms of corrosion: Galvanic or two metal corrosion, Crevice corrosion, Pitting, Intergranular corrosion, Selective leaching, Erosion corrosion, Stress corrosion, Hydrogen damage.

MODULE III: Corrosion testing and monitoring

Corrosion testing and monitoring: Non-electrochemical and electrochemical methods-potentiostat, Tafel extrapolation, linear polarization, galvanostat, impedance spectroscopy, thermogravimetric technique, salt spray test, weight change measurements.

MODULE IV: Corrosion prevention

Corrosion prevention: Design and coatings, inhibitors and surface engineering, cathodic protection and anodic protection

MODULE V: Corrosion and its control in different engineering materials and industries

Corrosion and its control in different engineering materials: concrete structures, duplex, super duplex stainless steels, ceramics, composites and polymers. Corrosion and its control in industries: Power, Process, Petrochemical, ship building, marine and fertilizer industries. Corrosion auditing in industries, Corrosion map of India.

Text books

- 1. Fontana M. G., Corrosion Engineering, Tata McGraw Hill, 3rd Edition, 2005.
- 2. Jones D. A, Principles and Prevention of Corrosion, Prentice-Hall, Inc., 2nd Edition, 1996.

Reference books

- 1. Scully J. C, The Fundamentals of Corrosion, 2nd Ed., Pergamon Press.
- 2. Stansbury E. E. and Buchanan, R. A, Fundamentals of Electrochemical Corrosion, ASM International.
- 3. Uhlig H. H. and Revie R. W, Corrosion and Corrosion Control, 3rd Ed., John

Wiley & Sons.

COURSE CONTENTS AND LECTURE SCHEDULE			
No.		No. of	
		Hours	
	MODULE 1 (8 hours)		
1.1	Definition and importance of corrosion	1	
1.2	Principles of corrosion phenomenon	1	
1.3	Principles of corrosion phenomenon	1	
1.4	Corrosion rate expressions	1	
1.5	Electrochemical aspects	1	

1.6	Electrochemical aspects	1
1.7	Environmental effects	1

1.8	Metallurgical and other aspects	1	
	MODULE II (7 hours)		
2.1	Different forms of corrosion	1	
2.2	Galvanic or two metal corrosion	1	
2.3	Crevice corrosion	1	
2.4	Pitting, Intergranular corrosion.	1	
2.5	Selective leaching,	1	
2.6	Erosion corrosion	1	
2.7	Stress corrosion, Hydrogen damage	1	
MODULE III (7 hours)			
3.1	Corrosion testing and monitoring:	1	
3.2	Non-electrochemical and electrochemical methods: potentiostat,	1	
3.3	Tafel extrapolation	1	
3.4	linear polarization, galvanostat	1	
3.5	impedance spectroscopy,	1	
3.6	thermogravimetric technique,	1	
3.7	salt spray test, weight change measurements	1	
MODULE IV (5 hours)			
4.1	Corrosion prevention:	1	
4.2	Design and coatings	1	

4.3	Inhibitors and surface engineering	1
4.4	cathodic protection	1
4.5	anodic protection	1

MODULE V (9 hours)		
5.1	Corrosion and its control in different engineering materials:	1
5.2	concrete structures, duplex, super duplex stainless steels	1
5.3	ceramics, composites and polymers.	1
5.4	Corrosion and its control in Power industries	1
5.5	Corrosion and its control in Process Petrochemical industries	1
5.6	Corrosion and its control in ship building, marine industries.	1
5.7	Corrosion and its control in Fertilizer industries.	1
5.8	Corrosion auditing in industries.	1
5.9	Corrosion map of India.	1

CO Assessment Sample Questions															
1	Explain the electrochemical aspects of corrosion.														
2	Explain galvanic corrosion with a neat sketch.														
3	Explain galvanostatic method of corrosion testing.														
4	Explain various corrosion control techniques.														
5	Discuss the need for conducting corrosion auditing in industries.														
24CH	E664	F	TIET	2 ANT		IDIIG	TION	L	Т	Р	J	S	С	Yea Introd	ar of luction
------------	------------	-------------------	--------	-------------------	------------	-------------	------------	-----------	---------	-------	----------	------	------	---------------	------------------
		F	UEL	5 ANL		IDUS	TION	3	0	0	0	3	3	20	24
Pream	ible: Tł	nis cou	arse r	provid	es a co	ompre	hensi	ve ı	้ เก	der	sta	an	din	g of fu	els and
combu	istion.	Key t	opics	in th	nis co	urse i	includ	les	so	lid,	1i	iqυ	uid	and g	aseous
fuels,	their oi	rigin, e	classi	ficatio	on, pre	eparat	ion p	roce	edu	ıre	ar	nd	ch	aracter	ization
in terr	ns of pl	hysico	- che	mical	prope	rties,	comb	ust	ior	ı ar	nd	th	le e	environ	mental
Impac	t of cor	nbust	ion p	rocess	ses.										
Drono	iaita.	NI:1													
Course		omes.	After	the c	omnle	tion o	f the	CO11	rse	• th	P	eti	ıde	nt will	he ahle
to	c oute	011103.	711101	the e	ompie			cou	130	, tII	C	511	auc		be able
001	Expla	in th	e imp	ortan	ce of	biofu	els ai	nd	hye	dro	ge	n	as	a fuel	, the
COI	chem	ical co	ompos	sition,	prope	erties,	and t	ype	s c	of fi	ıel	ls.			
	Expla	in th	ie va	rious	types	s of	solid	an	d	liq	ui	d	fu	els, th	eir
CO2	prepa	ration	i, ana	lysis,	and p	roper	ties, a	s w	ell	as	th	ne (diff	ferent r	nethods
	of refi	ınıng,	testır	ng, an	d han	dling	lıquıd	fuε	els.						
	Recog	gnize	the s	pecific	appl:	icatio	ns of	diff	ere	ent	g	ase	eou	is fuels	s, in
CO3	variou	us en	gine	syster	ns inc	cludin	g spa	rk	igr	itio	on	e	ngi	nes,	
	comp	ressio	n eng	gines,	jet en	igines	, and	roc	ke	ts.					
CO4	Analy	ze an	d calo	ulate	theor	etical	air re	qui	ren	ner	nts	, f	lue	e gas	
	comp	0S1t101	n, and	d comb	oustion	n kıne	etics for	or h	iyd	rog	ger	1-0	xyg	gen and	1
	Asses	s env	ironn	gen re ventall	v resr	s. onsih	le cor	nhu	eti	on	n	rad	otic	es inc	luding
CO5	emiss	ion co	ontrol	techr	nologie	es and	l life	cvcl	le	ana	ч alv	sis	s fo	or sust	ainable
000	energ	v appl	icatio	ns.	1010810	,5 and	• ••••	0901			<u> </u>	010	, 10	51 5450	amabie
	4	-		C	CO - P	O MA	PPIN	G							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	28	PC)9	PC)1	PO11	PO12
												0			
CO1	3	3				2									2
CO2	3	3				2									2
CO3	3	3				2									2
CO4	3	3				2	•								2
C05	3	3				2	3								2
				As Conti	ssessn			rn omt							
Blo	om'a (² atog	0 #17	Tools	nuou	5 ASS	essiii	ent				E	nd	Seme	ster
BIO		Jateg	JIY	Tes	st1	Tes	st 2	Oth	ler			E	Cxa	minat	ion
								too	ols						
Remer	Remember]								
Under	stand]								
Apply]								
Analys	se														
Evalu	ate														
Create	2														

			Mark Di	stributio	on of CIA					
	υ Theory [L- T]								S	
Course Stru [L-T-	Attendanc Assignmen t Test-1 Test-2						Total Marl			
3-0-	0-0	5	15	10		10		40		
			Total M	Iark dist	ribution					
Total Ma	rks	CIA	(Marks)	E	SE (Marks)	ES	SE Duration		
100			40		60			3hr		
End Semest	er Ex	amina	tion [ES	E]: Patte	ern					
PATTERN		PART	Α		PART B			ESE	Marks	
PATTERN 1 Narks: (2x10 =20 marks)				2 ques from e which be questic maxim divisio Each Marks: Time: 3	ach modu 1 questic answered on can num of ns. question 8 marks. : (5x8 = 40 3 hours	be ile, don sl hav 2 carr	given out of hould Each ve a sub ies	e	50	
	То	tal Ma	rks: 20	Total M marks]	arks: [5x8	= 4	0			
			SY	LLABUS						
MODULE I	: Intro	oducti	on to Fu	iels and	Combust	ion				

Chemical composition and properties of fuels. Definition of fuels and their role as energy sources. Importance of fuels in meeting global energy demands. Fuels - Types and Characteristics of Fuels - Introduction to Green Fuels, Definition and characteristics of green fuels. Importance of transitioning to environmentally friendly fuel alternatives. Types of Green Fuels, Biofuels: Production, sources, and advantages- Introduction to Hydrogen as a Fuel: Definition and properties of hydrogen. Comparison of hydrogen with conventional fuels. Importance of hydrogen

as a clean and sustainable energy carrier. **MODULE II: Solid fuels and liquid fuels**

Solid fuels – Classification, preparation, cleaning, analysis, ranking and properties – action of heat, oxidation, hydrogenation, carbonization, liquefaction and gasification. Liquid fuels – Petroleum – origin, production, composition, classification, petroleum processing, properties, testing – flow test, smoke points, storage and handling. Secondary liquid fuels – Gasoline, diesel, kerosene and lubricating oils. Modified and synthetic liquid fuels. ASTM methods of testing the fuels. Properties of Liquid Fuels -Calorific Value, Specific Gravity, Flash & Fire Point, Octane Number and Cetane Number.

MODULE III: Gaseous fuels

Gaseous fuels – Types, natural gas, methane from coal mine, water gas, carrier gas, producer gas, flue gas, blast furnace gas, biomass gas, refinery gas, LPG – manufacture, cleaning, purification and analysis. Fuels for spark ignition engines, knocking and octane number, anti-knock additives, fuels for compression, engines, octane number, fuels for jet engines and rockets. Flue gas analysis by

chromatography and sensor techniques.

MODULE IV: Combustion

Combustion: Stoichiometry, thermodynamics. Nature and types of combustion processes – Mechanism – ignition temperature, explosion range, flash and fire points, calorific value, calorific intensity, theoretical flame temperature. Combustion calculations, theatrical air requirements, flue gas analysis, combustion kinetics –

hydrogen - oxygen reaction and hydrocarbon - oxygen reactions.

MODULE V: Combustion and Environmental Impact

Rocket propellants and Explosives – classification, brief methods of preparation, characteristics; storage and handling emissions: Effects of pollutants, Quantification of emissions, Emission from premixed combustion, Emissions from non-premixed combustion. Control technologies for reducing emissions-Combustion and climate change mitigation-Life cycle analysis and sustainability of combustion processes.

Text books

- 1. Fuels and Combustion, Samir Sarkar, Orient Longman Pvt. Ltd, 3rd edition, 2009.
- 2. "Fuels and Combustion" by S.P. Sharma and Chander Mohan.

Reference books.

- 1. An introduction to combustion: Concept and applications Stephen R Turns, Tata Mc. Graw Hill, 3rd edition, 2012.
- 2. Fundamentals of Combustion, D P Mishra, 1st edition, University Press, 2010
- 3. Engineering Chemistry R. Mukhopadhyay and Sriparna Datta, Newage International Pvt. Ltd, 2007.

	COURSE CONTENTS AND LECTURE SCHEDULE	
No		No. of
INO.		Hours
	MODULE 1 (7 hours)	
1.1	Chemical composition and properties of fuels. Definition of	1
	fuels and their role as energy sources.	
1.2	Importance of fuels in meeting global energy demands. Fuels -	1
	Types and Characteristics of Fuels.	
1.3	Introduction to Green Fuels, Definition and characteristics of	1
	Importance of transitioning to environmentally	
1.4	friendly fuel	1
	alternatives. Types of Green Fuels.	
1.5	Biofuels: Production, sources, and advantages.	1
1.6	Introduction to Hydrogen as a Fuel: Definition and properties	1
	of hydrogen.	
1.7	Comparison of hydrogen with conventional fuels. Importance	1
	of hydrogen as a clean and sustainable energy carrier.	
	MODULE II (7 hours)	
2.1	Solid fuels – Classification, preparation, cleaning, analysis,	1
	ranking and properties	
2.2	Action of heat, oxidation, hydrogenation, carbonization,	1
	liquefaction and gasification	
2.3	Liquid fuels – Petroleum – origin, production, composition,	1

	classification	
2.4	petroleum processing, properties, testing – flow test, smoke	1
	points, storage and handling	
2.5	Secondary liquid fuels – Gasoline, diesel, kerosene and lubricating oils	1
2.6	Liquid fuels – refining, cracking, fractional distillation, polymerization. Modified and synthetic liquid fuels. ASTM methods of testing the fuels	1
	Properties of Liquid Fuels -Calorific Value, Specific	
2.7	Gravity, Flash & Fire Point, Octane Number, Cetane	1
	MODULE III (8 hours)	
	Gaseous fuels – Types natural gas methane from	
3.1	coal mine, water gas, carrier gas, producer gas	1
3.2	Flue gas, blast furnace gas, biomass gas, refinery gas.	1
3.3	LPG – manufacture, cleaning, purification and analysis	1
3.4	number,	1
3.5	Fuels for spark ignition engines, knocking and octane number, anti knock additives.	1
3.6	Fuels for compression, engines, octane number.	1
3.7	Fuels for jet engines and rockets, Fuels for spark ignition	1
3.8	Knocking and octane number, anti knock additives. Flue gas	1
	analysis by chromatography and sensor techniques.	
	MODULE IV (6 hours)	
4.1	Combustion: Stoichiometry, thermodynamics Nature and	1
	types of combustion processes	
4.2	flash and	1
	fire points.	

4.3	Calorific value, calorific intensity, theoretical flame temperature	1
4.4	Combustion calculations, theatrical air requirements, flue gas analysis.	1
4.5	Combustion kinetics – hydrogen – oxygen reaction and hydrocarbon – oxygen reactions.	1
4.6	Combustion kinetics – hydrogen – oxygen reaction and hydrocarbon – oxygen reactions.	1
	MODULE V (7 hours)	
5.1	Rocket propellants and Explosives – classification, brief methods of preparation, characteristics; storage and handling. missions:	1
	Rocket propellants and Explosives – classification, brief methods of preparation, characteristics; storage and handling. missions	1
5.2	Effects of pollutants, Quantification of emissions	1
5.3	Emissions from non-premixed combustion. Air pollution from combustion processes -Greenhouse gas emissions and global warming potential	1
5.4	Emissions from non-premixed combustion. Air pollution from combustion processes -Greenhouse gas emissions and global warming potential	1
5.5	Control technologies for reducing emissions- Combustion and climate change mitigation	1
5.6	Control technologies for reducing emissions- Combustion and	1
	climate change mitigation	

	climate change mitigation	
5.7	Life cycle analysis and sustainability of combustion processes	1

	CO Assessment Sample Questions
1	Explain the role of chemical composition and properties of different fuels in its performance as energy source.

2	Describe the significance of ASTM methods of testing liquid fuels and how							
	they contribute to ensuring fuel quality and safety.							
3	Explain the significance of octane number in fuels for spark ignition							
	engines and cetane number in fuels for compression engines. How							
	do these ratings influence engine performance and efficiency?							
4	Describe the concept of stoichiometry in combustion processes and how it							
	relates to the calculation of theoretical air requirements.							
	Discuss how the life cycle analysis can be applied to evaluate the							
_	environmental impact of a combustion system. Provide specific							
5	examples of emission control technologies utilized to achieve							
	environmentally							
	responsible combustion practices for sustainable energy applications.							

24CH	IE674		NUC	LEAR	E ENG	INEE	RING	L	Т	P J S C Year o Introduc				ar of ductio	
								3	0	0	0	3	3	n 20	24
Prear	nhle	The	cour	se fo	011969	011	the	fur	• da	me	• n	tale		of ni	 Iclear
engin	eering	The	conte	ent in	cludes		ienta	my n	110	lea	r -	nh	, 		iclear
reacto	or nuc	lear fi	uels	hoilin	g wate	er read	rtor s	stru	cti	iral	l n	nat	eri	ials re	actor
heat	emova	1 safe	etv an	d dist	n all	netho	de foi	r n11	cle	ar	x 7 2	aste	2011	The c	ourse
helps	the st	udent	ts to i	under	stand	the t	heori	es a	nd	nr	in.	cin	les	s of m	iclear
power	gener	ation,	, heat	remo	val teo	chniqu	les a	nd s	afe	e di	sp	os	al	metho	ds.
Prere	quisite	: Nil													
Cours able t	s e Out e	comes	s: Afte	er the	compl	letion	of the	e co	ırs	e t	he	e st	ud	lent wi	ll be
CO1	Expla	in the	e eng	ineeri	ng de	sign	of nu		r	pov	ve	r ţ	ola	nts u	sing
	and h	asic p .eat tr	ansfe	r.	react	or phy	ysics,	the	1.111	.00	y11	an	11C	s, nuic	1 HOW
CO2	Expla	in the	e nuc	lear r	eactor	princ	ciples	, nu	cle	ear	Sa	afet	y,	and r	eactor
	dynar	nic be	ehavio	ur.											
CO3	Descr	ibe bo	oiling	water	react	or, de	sign,	com	po	ne	nt	s a	nd	mater	rials.
CO4	Expla	in hea	at tra	nsfer	and h	eat re	mova	1 sy	ste	ms	•				
CO5	Discu	ss the	e met	hods t	for nu	clear	waste	e dis	po	sal	•				
				C	O - P	O MA	PPIN	G .							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	PC)9	РО 0	1	PO11	P012
CO1	3	3													
CO2	3	2	2			2									
CO3	3	2	2			-									
CO4	3	2	3			2	3								
CO5	3	2	3	•		3	3								
					sessm	ient i	atte	rn							
Blo	om's (Categ	ory	Tools	nuou	s Ass	essm	ent				En	ld	Seme	ster
				Tes	st1	Tes	st 2	Oth too	er ls				sa.	mmat	1011
Remember															
Unde	Understand														
Apply															
Analy	vse														
Evalu	late														
Creat	e														

			Mark Di	stributio	n of CIA				
		Theory []			S S				
Course Structure [L-T-P-J]				Assignmen t	Test-1		Total Mar		
3-0-0-0 5				15	10		10		40
			Total M	lark distr	ibution				
Total Ma	ırks	CIA	(Marks)	ES	E (Marks)		E	SE Du	ration
100			40		60			3 hou	rs
	En	d Sem	ester Ex	aminatio	on [ESE]:	Patt	ern		
PATTERN		PART	Α		PART B			ESE	Marks
PATTERNPART10 Question each question c marksPATTERN 1Marks:(2x marks)			ons, arries 2 10 =20	2 quest from ea of whi should Each q a maxi division Each q 8 Marks: Time: 3	ions will l ach modu ich 1 c be an uestion ca imum of ns. uestion c marks. (5x8 = 40 hours	be gi ule, quest swer an h 2 s carrie	ven out ion red. ave sub sub	6	0
	Total Ma marks]	rks: [5x8	= 40)					
			SY	LLABUS					
MODULE I	: Rev	iew of	element	tary Nuc	lear Phys	sics			

Review of Elementary nuclear physics: Atomic structure – nuclear energy and nuclear forces – Nuclear fission. Nuclear reactions and radiations – Principles of radioactive decay interactions of a ray with matter, types of radiation, radiation detection and measurement, nuclear models, Neutron cross sections and reactions – Chain reactions.

MODULE II: Principles & working of nuclear reactor

Basic principles of controlled fusion. Nuclear reactor principles – Reactor classification – Critical size. Basic diffusion theory - Slowing down of neutrons – Neutrons – Neutron flux and power – Four factor formula – Criticality condition –Basic features of reactor control.

MODULE III: Boiling water reactor

Boiling water reactor. Description of reactor system, construction, main components, working of reactor, Control and safety features, Materials of reactor construction –Fuel, moderator, coolant.

MODULE IV: Structural materials, nuclear fuels, Reactor heat transfer

systems.

Structural materials – Cladding –Radiation damage, nuclear fuels: Metallurgy of Uranium – General principles of solvent extraction – Reprocessing of irradiated fuel

- Separation process fuel enrichment. Reactor heat removal / equations of heat transfer as applied to reactor cooling- Reactor heat transfer systems – Heat removed in fast reactors.

MODULE V: Safety and disposal

Radiation safety: Reactor shielding – Radiation dozes – Standards of radiation protection. Safety and disposal: Nuclear plant safety-safety systems-changes and consequences of accident-criteria for safety-nuclear waste types of waste and its disposal-radiation hazards and their prevention-weapons proliferation.

Text books

- 1. S. Glasstone and A. Sesonske, Nuclear Reactor Engineering, D. Van Nostrand Company, INC. 1967.
- S Glasstone, Source book on atomic energy, Krieger Pub Co., 1979.

Reference books

- 1. Vaidyanathan.G., Nuclear Reactor Engineering (Principles and Concepts), S.Chand & Company, New Delhi, 2013.
- 2. Jacques Libmann, Elements of Nuclear Safety, Les Editions de Physique 1996.

COURSE CONTENTS AND LECTURE SCHEDULE

No		No. of
INO.		Hours
	MODULE 1 (6 hours)	
1.1	Review of Elementary nuclear physics: Atomic structure –	1
	nuclear energy and nuclear forces.	
1.2	Nuclear fission.	1
1.3	Nuclear reactions and radiations – Principles of radioactive	1
	decay interactions of a ray with matter.	
1.4	Types of radiation, radiation detection and measurement.	1
1.5	Nuclear models, Neutron cross sections and reactions.	1
1.6	Chain reactions.	1

MODULE II (7 hours)									
2.1	Basic principles of controlled fusion.	1							
2.2	Nuclear reactor principles.	1							
2.3	Reactor classification, Critical size.	1							
2.4	Basic diffusion theory, Slowing down of neutrons.	1							
2.5	Neutrons – Neutron flux and power.	1							
2.6	Four factor formula – Criticality condition.	1							
2.7	Basic features of reactor control.	1							
	MODULE III (6 hours)	-							
3.1	Boiling water reactor, Description of reactor system.	1							
3.2	Construction.	1							
3.3	Main components.	1							

3.4	Working of reactor.	1
3.5	Control and safety features.	1
3.6	Materials of reactor construction, – Fuel, moderator, coolant.	1
	MODULE IV (8 hours)	
4.1	Structural materials – Cladding –Radiation damage.	1
4.2	Nuclear fuels.	1
4.3	Metallurgy of Uranium, General principles of solvent extraction.	1
4.4	Reprocessing of irradiated fuel.	1
4.5	Separation process fuel enrichment	1
4.6	Reactor heat removal / equations of heat transfer as applied to reactor cooling.	1
4.7	Reactor heat transfer systems	1
4.8	Heat removed in fast reactors.	1
	MODULE V (8 hours)	
5.1	Radiation safety: Reactor shielding.	1
5.2	Radiation doses, Standards of radiation protection.	1
5.3	Safety and disposal: Nuclear plant safety.	1
5.4	Safety systems.	1
5.5	Changes and consequences of accident, criteria for safety.	1
5.6	Nuclear waste types of waste and its disposal.	1
5.7	Radiation hazards and their prevention.	1
5.8	Weapons proliferation.	1

	CO Assessment Sample Questions
	a) Explain the radioactive decay law.
-	b) Identify the radioactive reactions following, when a
T	neutron is captured by U238 substance.
	c) Compare nuclear fission and nuclear fusion.
	a) Explain the working of a reactor system in which nuclear
2	fission is the working principle.
	b) Explain the basic features of nuclear reactor control.
3	Illustrate the working of a boiling water reactor with neat sketch.
	Compare the heat removal system in a fast breeder reactor with
4	that of a boiling water reactor.
	Derive heat conduction equation in the moderator.
-	Explain different types of nuclear wastes and list any five
ວ	methods of its
	disposal.

24CHE684		POLY	MER	TECH	INOLO	OGY	L	Т	Р	J	S	С	Ye Intro n	ar of ductio	
								3	0	0	0	3	3	20)24
Pream	ble: Ti	his Po	lymei	r Tech	nolog	y cou	rse e	ncoi	mp	ass	es	а	С	ompreh	nensive
study	study of topics including Molecular Weight of Polymers, Manufacture,														
Properties, and Applications of Bioplastics and Elastomers, Rheology and															
Testing	g of P	olyme	rs, Ad	lditive	s use	d, an	d th	e Pi	roc	ess	in	g	of	Plastic	es and
Elastor	ners.														
Prereq	uisite:	Nil	A C:	41	1	· ·	C (1			. 1			1	11	1
able to	Course Outcomes: After the completion of the course the student will be able to														
CO1	Unde	Understand the fundamentals and mechanisms of polymerisation,													
	classi	ificatio	on an	d met	hods o	of poly	vmeri	satio	on.						
CO2	Descr polym	ribe m ners a	iethoo nd ur	ls to Idersta	find and th	out a ne fact	verag ors a	e m ffect	iole ing	ecu g po	laı oly	v v mo	vei er j	ght of propert	ies.
CO3	Sumr	narize	the	man	ufactu	ire, p	roper	rties	а	nd	e	ng	ine	ering	
	applie	cation	s of o	differe	nt poly	ymeric	e mate	erial	s.						
CO4	Analyse the rheology and mechanical properties of polymers and to understand the functions of additives used in polymers.														
CO5	Expla	in the	e proc	essing	g metł	hods d	of pla	stics	s a	nd	ela	ast	on	iers.	
				С	O - P	О МА	PPIN	G							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	' PC)8	PC)9	РС 0)1	PO11	PO12
CO1	3														
CO2	3														
CO3	3														
CO4	3						2								
CO 5	3			•		3									2
					sessm	ient i	atte	rn							
Bloom's Category T			Conti Tools	nuou	s Ass	essm	ent				E	nđ	Seme	ster	
			- y	Tes	st1	I Test 2		Oth too	ier ols	Examination		tion			
Remember															
Understand															
Apply]									
Analys	se														
Evalua	ate														
Create	:														

	Mark Di	stributior	of CIA		
	ů.		S		
Course Structure [L-T-P-J]	Attendanc	Assignmen t	Test-1	Test-2	Total Marl
3-0-0-0	5	15	10	10	40

Total Mark distribution

Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration			
100	40	60	3hr			
End Semester Examination [ESE]: Pattern						

PATTERN	PART A	PART B	ESE Marks
Pattern 1	10 Questions, each question carries 2 marks Marks: (2x10 =20	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.	60
	marks)	Each question carries 8 marks.	
		Marks: (5x8 = 40 marks)	
		Time: 3 hours	
	Total Marks: 20	Total Marks: [5x8 = 40 marks]	
	SY	LLABUS	

MODULE I : Introduction to Polymers, Classification and kinetics

Introduction to polymers-monomer, functionality, classification of polymer based on source, structure, application, thermal behaviour, mode of polymerization. Kinetics of step growth polymerisation, addition and Ionic polymerisations - anionic polymerization and cationic polymerization. Copolymerisation-Different types of copolymers-Characteristics. Methods of polymerization - bulk, solution, suspension and emulsion polymerization.

MODULE II : Molecular weight of polymers

Molecular weight of polymers – weight average and number average molecular weight – sedimentation and viscosity average molecular weights. Experimental methods for molecular weight determination – end group analysis, light scattering method viscometry(Ostwaldviscometer) intrinsic viscosity-sedimentation methods. Molecular weight distribution curve. Factors affecting polymer properties --crystallinity-orientation treatment-solubility of polymers-glass transition temperature – types of polymer degradation.

MODULE III : Manufacture, properties and applications Bioplastics, Elastomers

Manufacture (Detailed flow sheet not required), properties and applications of polymers- Thermoplastics-ABS – acrylics-cellulose acetate – fluoropolymers (PTFE)- nylons – polycarbonate-PVC-PE– PP – PS – polyurethanes. Thermosetting plastics – epoxy – phenol formaldehyde-urea formaldehyde – polyesters – silicones. Bioplastics – Poly lactic acid (PLA), Polyhydroxy Butyrate (PHB), Cellulose Acetate. Elastomers, Butyl rubber, Nitrile rubber.

MODULE IV : Rheology and Testing of polymers and additives used

Properties of polymers – rheology- viscous flow – apparent viscosity – rubber like elasticity – stress-strain behaviour of elastomers – viscoelasticity – measurement of rheological properties – melt flow index (MFI) – capillary rheometers. Estimation of mechanical properties like tensile strength, flexural strength, hardness and impact strength of polymers. Additives for polymer processing-- -effect of additives used – plasticizers – colourants – heat stabilizers - antioxidants.

MODULE V : Processing of plastics and elastomers

Plastic processing technology-injection moulding-compression moulding calendaring – blow moulding – extrusion – thermoforming – wet, dry and melt spinning methods for fibres –vulcanization of rubber — general study of elastomer processing - brief description of compounding methods. Introduction to polymer nano composites-types and properties of nanofillers applications.

Text books

- 1. Billmeyer F.W., Text book of polymer science, John Wiley.
- 2. Gowariker V.R. Polymer Science, New Age.

Reference books

- 1. Premamoy Ghosh., Polymer Science and Technology, Tata Mc Graw Hill.
- 2. Rodrigues F., Principles of polymer systems, Tata Mc Graw Hill.

COURSE CONTENTS AND LECTURE SCHEDULE					
Na		No. of			
INO.		Hours			
	MODULE 1 (8 hours)				
1.1	Monomer, functionality	1			

1.2	Classification of polymer based on source, structure, application, thermal behaviour, mode of polymerization	1
1.3	Kinetics of step growth polymerization	1

1.4	Kinetics of addition polymerization- free radical polymerization	1
1.5	Ionic polymerisation-anionic and cationic polymerization	1
1.6	Different types of copolymers- Characteristic features, Copolymer equation.	1
1.7	Methods of polymerization – bulk, solution, suspension and emulsion polymerization	1
1.8	Methods of polymerization – bulk, solution, suspension and	1
	MODULE II (7 hours)	
2.1	Weight average and number average molecular weight- Definition and types	1
2.2	Experimental methods of molecular weight determination- end group analysis	1
2.3	Determination of molecular weight by Light scattering method	1
2.4	Viscometry and Sedimentation methods,	1
2.5	Molecular weight distribution curve	1
2.6	Factors affecting polymer properties	1
2.7	Types of polymer degradation	1
	MODULE III (7 hours)	
3.1	Thermoplastics-ABS – acrylics – cellulose acetate - fluoropolymers (PTFE) – nylons.	1
3.2	Fluoropolymers (PTFE) – nylons.	1
3.3	Polycarbonate – PVC – PE– PP – PS – polyurethanes.	1
3.4	Polycarbonate – PVC – PE– PP – PS – polyurethanes.	1
3.5	Thermosetting plastics – epoxy – phenol formaldehyde – urea	1

	formaldehyde.	
3.6	Polyesters – silicones, Bioplastics- Poly lactic acid.	1
3.7	Elastomers-Natural rubber- Butyl rubber- Nitrile rubber.	1
	MODULE IV (7 hours)	
4.1	Properties of polymers – rheology- – apparent viscosity -	1
	viscous flow - stress strain behaviour of elastomers.	
4.2	Properties of polymers – rheology- – apparent viscosity -	1
	viscous flow - stress strain behaviour of elastomers.	1
4.3	Measurement of rheological properties – melt flow index (MFI) – capillary rheometers	1
4.4	Testing of tensile strength, flexural strength, hardness and impact strength of polymers.	1
4.5	Testing of tensile strength, flexural strength, hardness and impact strength of polymers.	1
4.5	Effect of additives used; plasticizers; colourants, antioxidants; ultraviolet absorbers and heat stabilizers.	1
4.6	Effect of additives used; antioxidants, heat stabilizers.	1
4.7	Effect of additives used; antioxidants, heat stabilizers.	1
	MODULE V (7 hours)	
5.1	Injection moulding – compression moulding.	1
5.2	Injection moulding – compression moulding.	1
5.3	Calendaring – blow moulding- Extrusion – thermoforming.	1
5.4	Calendaring – blow moulding- Extrusion – thermoforming.	1
5.5	Wet, dry and melt spinning methods for fibers.	1
5.6	Vulcanization of rubber -General study of elastomer processing methods.	1

5.7	Introduction to nanocomposites	1
-----	--------------------------------	---

	CO Assessment Sample Ouestions
1	List the types of polymerisation based on thermal response with examples.
2	Give details of determining the molecular weight of polymers by solution viscosity.
3	Compare the properties of butyl and nitrile rubbers.
4	Describe different models of viscoelastic behaviour of polymers.
5	Describe the process of vulcanization of rubber.

|--|

BIOREACTOR ANALYSIS
AND DESIGN

L	Т	Ρ	J	S	С	Year of
						Introduction
3	0	0	0	3	3	2024

Preamble: This course introduces the state of the art in bioreactor technology, its broad range of applications and strengthening the knowledge on analyzing bioreactor performance. It will also provide an understanding of the basic principles of the design of reactors for bioprocesses, develop mathematical descriptions of reaction kinetics

and their relationships with reactor design and use them to analyze their behaviour.

Prerequisite:	Nil
---------------	-----

Course Outcomes: After the completion of the course the student will be able to

- **CO1** Explain the functional description and working of conventional and novel bioreactors.
- **CO2** Calculate the batch reaction time and total batch time for enzymatic reactions.
- **CO3** Estimate theoretical design parameters in flow reactors.

CO4 Describe the theoretical and mechanical design aspects of bioreactors.CO5 Explain the non-ideality of bioreactors using RTD studies.

CO - PO MAPPING

						-		-				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO1 0	PO11	PO12
CO 1	3	2										2
CO 2	3	2										2
CO 3	3	2	2									2
CO 4	3		3									2
CO 5	3	2										2

Assessment Pattern

Bloom's Category	Continuou Tools	s Assessn	End Semester	
	Test1	Test 2	Other tools	Examination
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				

Mark Distribution of CIA										
	Theory [L- T]						S			
Course Structure [L-T-P-J]			Attendanc	Assignmen t	Test-1	Test-2				Total Marl
3-0	-0-0		5	15	10		10		I	40
			Total M	lark dist	ribution					
Total Ma	arks	CI	A (Marks)	ES	SE (Marks)		E	SE I	Dura	ation
100			40		60			3 h	our	s
	End Semester Examination [ESE]: Pattern									
PATTERN		PART	Α		PART B			E	SE	Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)			2 quest from ea which be a question maxim division Each o 8 Marks: Time: 3	tions will h ach module 1 question unswered. on can um of ns. question ca 3 marks. (5x8 = 40 n hours	ne (e, o sh hav 2 arri	iven out of ould Each ze a sub ies		60	C
	Tot	al Ma	rks: 20	Total Ma marks]	arks: [5x8	= 4	0			
			SY	LLABUS						

MODULE I: Bioreactors - Function, description, working, advantages and

limitations

Conventional Bioreactors - Stirred tank, airlift, airlift pressure cycle bioreactor, packed bed, fluidized bed, trickle bed and flocculated cell bioreactors. Novel Bioreactors - inverse fluid flow units, hollow fibre reactors, centrifugal field reactors, rotating drum bioreactor, spin filter bioreactor, disposable culture systems and wave bioreactor.

MODULE II: Batch Bioreactors

Batch bioreactor, cell death in batch reactor, endogenous metabolism, maintenance, calculation of batch reaction time from ideal system for enzyme reaction and cell culture, batch reaction time with enzyme deactivation, calculation of total batch time.

MODULE III: Continuous Flow Bioreactors

Ideal continuous flow stirred tank bioreactor (CFSTBR) - chemostat, substrate conversion and biomass productivity, mean residence time, comparison of batch bioreactor and single stage CFSTBR, washout condition, stability of the chemostat, chemostat with cell recycle, comparison of steady state biomass concentration and volumetric biomass productivity for a chemostat with and without cell recycle, conversion and productivity, Plug flow tubular reactor (PFTR).

MODULE IV: Design aspects of bioreactors

Guidelines for bioreactor design, bioreactor geometry, bioreactor vessels, agitator assembly, rheology and mixing, design, operation and types of agitators, power requirements for agitation, effects of agitation on mass transfer, oxygen delivery system - spargers, foam control system, mass transfer between phases - factors affecting mass transfer between phases.

MODULE V: Concept of non-ideal reactors

Residence time distribution, E(t) or F(t) and the bioreactor design, models of non-ideal reactors - Plug flow tubular reactor (PFTR), comparison of ideal mixed flow (batch and CFSTBR) and plug flow tubular reactors, calculation of reactor length and residence time, recycling in PFTRs, analysis of recycle reactor.

Text books

- 1. Pauline M Doran, Bioprocess Engineering Principles, Academic Press, 2013.
- 2. D G Rao, Introduction to Biochemical Engineering, Tata McGraw Hill, 2006.
- 3. Tapobrata Panda, Bioreactors: Analysis and Design, Tata McGraw-Hill Education, 2011.

Reference books

- 1. Alan H Scragg, Bioreactors in Biotechnology A Practical Approach, Ellis Horwood, 1991.
- 2. Klaas van't Riet, Johannes Tramper, Basic Bioreactor Design, Marcel Dekker, 1991.
- 3. Douglas S Clark, Harvey W Blanch, Biochemical Engineering, 2/e, Marcel Dekker, 1997.
- 4. J E Bailey, D F Ollis, Biochemical Engineering Fundamentals, 2/e, McGraw-Hill Chemical Engineering Series, 1986.
- 5. Octave Levenspiel, Chemical Reaction Engineering, 3/e, Wiley Student Education, 2006.
- 6. H Scott Fogler, Essentials of Chemical Reaction Engineering, Pearson Education,

2011.

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of
		nours
	MODULE I (8 nours)	
1.1	Conventional Bioreactors - Stirred tank bioreactors - Functional components.	1
1.2	Airlift, airlift pressure cycle bioreactor.	1
1.3	Packed bed, fluidized bed, trickle bed bioreactors.	1
1.4	Flocculated cell bioreactors	1
1.5	Novel Bioreactors - inverse fluid flow units.	1
1.6	Hollow fibre reactors, centrifugal field reactors.	1
1.7	Rotating drum bioreactor, spin filter bioreactor.	1
1.8	Disposable culture systems and wave bioreactor.	1
	MODULE II (8 hours)	
2.1	Batch reactor, Kinetics of cell growth.	1
2.2	Substrate utilization and product formation.	1
2.3	Cell death in batch reactor, endogenous metabolism, maintenance.	1
2.4	Calculation of batch reaction time from ideal system for enzyme reaction and cell culture.	1
2.5	Calculation of batch reaction time from ideal system for enzyme reaction and cell culture.	1
2.6	Batch reaction time with enzyme deactivation.	1
2.7	Components of total batch time	1
2.8	Calculation of total batch time.	1

	-					
2.8	Calculation of total batch time.	1				
MODULE III (8 hours)						
3.1	Ideal continuous flow stirred tank bioreactor (CFSTBR) – chemostat	1				

3.2	Multiple steady state analysis, mean residence time.	1
3.3	Biomass productivity, maximum biomass productivity.	1
3.4	Comparison of batch bioreactor and single stage CFSTBR.	1
3.5	Washout condition, stability of the chemostat, Numerical problems.	1
3.6	Chemostat with cell recycle, comparison of steady- state biomass concentration and volumetric biomass productivity for a chemostat with and without cell recycle	1

3.7	Plug flow tubular reactor (PFTR).	1			
3.8	Conversion and productivity.	1			
	MODULE IV (5 hours)				
4.1	Guidelines for bioreactor design, bioreactor geometry, bioreactor vessels.	1			
4.2	Rheology and mixing, design, operation.	1			
4.3	Types of agitators, power requirements for agitation.	1			
4.4	Effects of agitation on mass transfer, oxygen delivery system –	1			
4.5	Mass transfer between phases- Factors affecting mass transfer between phases.	1			
MODULE V (7 hours)					
5.1	Non-ideality in reactors, non-ideality in batch bioreactors.	1			
5.2	Residence time distribution, E(t) or F(t) and the bioreactor design.	1			
5.3	Models of non-ideal reactors –Tanks in Series Model.	1			
5.4	Dispersion Model.	1			
5.5	Comparison of ideal mixed flow (batch and CFSTBR) and plug flow tubular reactors- residence time.	1			

5.6	Recycling in PFTBR	1
5.7	Analysis of recycle reactors	1

	CO Assessment Sample Questions
1	Describe on the functional components of a bioreactor.
2	A strain of bacteria has been genetically engineered to produce protein. A batch culture is started by inoculating 15 g of cells into 80-litre batch stirred fermenter containing 10 g/l glucose. The culture immediately adapts to the environment so that it can be assumed that the system does not exhibit a lag phase. The cell maintenance requirement can be neglected. Also, there are no extra cellular products formed. The maximum specific growth rate of the cells is 1 h -1. The biomass yield from glucose is 0.6 g/g. i. Obtain the expression for batch growth time of this culture. ii. What will be time taken to reach the substrate concentration to 75% of the initial value?

	iii. If a downtime of 25 hours is expected between batches,					
	how many					
	batches could be processed in a year?					
	A 5 m3 fermenter is operated continuously using a feed substrate					
	concentration of 20 kg/m3. The microorganism cultivated in the					
	reactor has the following characteristics: $\mu_{max} = 0.45$ h-1; KS = 0.8					
3	kg/m3; YX/S = 0.55 kg/kg.					
5	i. Obtain the residence time of this chemostat?					
	ii. What feed flow rate is required to achieve 90% substrate					
	conversion?					
	iii. How does the biomass productivity at 90% substrate					
	conversion compare with the maximum possible.					
1	Describe on the stanwise presedure for hierageter vegeel well design					
4	Describe on the stepwise procedure for bioreactor vesser wall design.					
E	Evaluin non-ideality of different bioreactors using RTD concents					
Э	Explain non-ideality of different bioreactors using KTD concepts.					

SIXTH SEMESTER PROFESSIONAL ELECTIVE-2 / INDUSTRIAL ELECTIVE

24CHE615	WATER AND WASTEWATER ENGINEERING	L	Т	Р	J	S	С	Year of Introduction
2.0112010		3	0	0	0	3	3	2024

Preamble: This course gives an overall information about the sources and demand of water and its physico-chemical and biological characteristic, treatment techniques to be carried out in day-to-day life. The wastewater generated from domestic and industrial sectors needs to be treated as per the guidelines defined by state and central regulatory bodies though engineered approach before final disposal to environment. This course will give an idea about the physico-chemical and biological treatment systems required for the wastewater in line with the disposal criteria defined by various regulatory bodies.

Prerequisite: Nil

Apply Analyse Evaluate Create

Course Outcomes: After the completion of the course the student will be able to **CO1** Estimate the quantity of water and wastewater by population forecasting methods and explain the physicochemical and biological characteristics. Describe variou physical unit operations for wastewater **CO2** treatment methods. Select suitable biological unit process for wastewater treatment by **CO3** aerobic process. **CO4** Explain the principle of anaerobic process to estimate the extend of treatment and explain tertiary wastewater treatment. **CO5** Describe sources and solid composition in sludge and its various treatment for sustainable disposal. **CO - PO MAPPING PO1 PO2 PO** PO4 PO5 PO6 PO7 PO8 PO PO1 CO **PO1 PO12** 3 9 0 1 **CO** 1 3 3 3 3 2 **CO 2** 3 3 3 3 2 **CO** 3 3 3 3 3 2 **CO 4** 3 2 3 3 2 **CO** 5 3 2 3 3 2 **Assessment Pattern Continuous Assessment** End Tools **Bloom's Category** Semester Other Test1 Test 2 Examination tools Remember Understand

Course Structure [L-T-P-J]Theory [L- T]spin termTheory [L- T]spin termTheory [L- T]spin termTheory [L- T]spin termStructure [L-T-P-J]spin termTotal MarksCIA (Marks)ESE (Marks)ESE DurationTotal MarksCIA (Marks)ESE (Marks)ESE DurationTotal MarksCIA (Marks)ESE (Marks)ESE DurationTotal MarksCIA (Marks)ESE (Marks)ESE DurationTotal MarksCIA (Marks)ESE DurationTotal MarksCIA (Marks)ESE (Marks)ESE DurationTotal MarksCIA (Marks)ESE (Marks)ESE Duration10040GO3PATTERNPART APART BESE MarksMarks:CI20CI2PATTERNPART APART APART APART BESE (Marks)PATTERN 1PART APART APART A <t< th=""><th></th><th></th><th>Mark D</th><th>Distributio</th><th>on of CIA</th><th></th><th></th><th></th></t<>			Mark D	Distributio	on of CIA					
[L-T-P-J]jj<	Course Structur	Course g			Theory [L- T]					
3-0-0-0 5 15 10 10 40 Total Marks CIA (Marks) ESE (Marks) ESE Duration Total Marks CIA (Marks) ESE (Marks) ESE Duration 100 40 60 3 Hours PATTERN PART A PART B ESE Marks PATTERN 1 10 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub marks 60 PATTERN 1 10 Each question carries 8 marks. 60 Marks: (2x10 Each question carries 8 marks. 60 Total Marks: (2x10 Each question carries 1 marks) 60 Total Marks: 100 Total Marks: Total Marks: [5x8 = 40 marks) 60 Total Marks: 2x10 Total Marks: Total Marks: [5x8 = 40 marks) 60 Total Marks: 2x10 Total Marks: Total Marks: [5x8 = 40 marks] 60 POULE I: Water demand and its Treatment Population forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater. Water Supply/Distribution Systems. Wastewater Collection Systems Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods	[L-T-P-J	Attendan	Assignmen t	Test-1 Test-2			Total Mar			
Total Mark distribution Total Marks CIA (Marks) ESE (Marks) ESE Duration 100 40 60 3 Hours End Semester Examination [ESE]: Pattern PATTERN PART A PART B ESE Marks PATTERN PART A PART B ESE Marks PATTERN PART A PART B ESE Marks PATTERN 10 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub marks should be answered. Each question can have a maximum of 2 sub divisions. 60 PATTERN 1 Each question carries 8 marks. 8 marks. 60 Marks: (2x10 = 20 marks) Each question carries 8 marks. 60 Time: 3 hours Time: 3 hours 10 10 SYLLABUS MODULE I: Water demand and its Treatment Population forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater. Water Supply/Distribution Systems. Wastewater Collection Systems Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatmen for Potable Water Supply). Plant layout; Hydraulic cons	3-0-0-0	5	15	10		10	40			
Total MarksCIA (Marks)ESE (Marks)ESE Duration10040603 HoursPATTERNPATTERNPART APART BESE MarksPATTERN10 Questions, each question carries 2 marks2 questions will be given from each module, out of which 1 question should be answered. 			Total I	Mark dist	ribution					
Total Marks Call (Marks) Dol (Marks) Dol (Marks) Dol (Marks) Dol (Marks) PATTERN PART A PART B ESE Marks PATTERN PART A PART B ESE Marks PATTERN 10 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub marks 60 PATTERN 1 10 2 questions (State 1) 60 Marks: 2x10 Each question carries 8 marks. 60 Marks: 10 20 marks) 60 Total Marks: Total Marks: 5x8 = 40 marks) 60 SYLLABUS Total Marks: 10 10 10 10 Marks: 20 marks 10 10 10 10 SYLLABUS SYLLABUS More and wastewater. 10	Total Marks	CI	A (Marks) E	SE (Mark	(s)	F	SE Duration		
Indext Semester Examination [ESE]: Pattern PATTERN PART A PART B ESE Marks 10 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub marks 10 60 PATTERN 1 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Col	100		40	·) <u> </u>	60	.5]		3 Hours		
PATTERNPART APART BESE MarksPATTERN10 Questions, each question carries 2 marks2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.60PATTERN 1Each question carries 2 marksEach question can have a maximum of 2 sub divisions.60Marks: (2x10 =20 marks)Each question carries 8 marks.60Total Marks: 20Total Marks: Time: 3 hours500MODULE I: Water demand and its TreatmentPopulation forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater.Water Supply/Distribution Systems. Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatmen for Potable Water Supply). Plant layout; Hydraulic considerations.	100	End Ser	nester E	xaminati	on [ESE]	• Pat	tern	5 110015		
PATTERN 110 Questions, each question carries 2 marks2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.60PATTERN 1Marks: (2x10 =20 marks)Each question carries 8 marks.60Marks: (2x10 =20 marks)Each question carries 8 marks.60Marks: (2x10 =20 marks)Total Marks: (5x8 = 40 marks)60Total Marks: 20Total Marks: [5x8 = 40 marks]60SYLLABUSMODULE I: Water demand and its TreatmentPopulation forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater.Water Supply/Distribution Systems. Waster Marker: Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatmen for Potable Water Supply). Plant layout; Hydraulic considerations.	PATTERN	PA	RT A		PART E	3	<u></u>	ESE Marks		
Total Marks: 20Total Marks: marks][5x8 = 40 marks]SYLLABUSMODULE I: Water demand and its TreatmentPopulation forecast; Water demand for various purposes; Estimation o 	PATTERN 1	10 Quest each quest carrie marks Marks =20 m	ions, ion s 2 s s: (2x10 aarks)	2 ques from o of wh should Each o a man divisio Each Marks Time: 3	tions will each mod hich 1 l be a question o simum o ns. question 8 marks. c (5x8 = 40 3 hours	iven out otion ered. nave sub es	60			
SYLLABUS MODULE I: Water demand and its Treatment Population forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater. Water Supply/Distribution Systems. Wastewater Collection Systems Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatment for Potable Water Supply). Plant layout; Hydraulic considerations.		Total 2	Marks:	Total	Marks: [5	x8 =	• 40			
MODULE I: Water demand and its Treatment Population forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater. Water Supply/Distribution Systems. Wastewater Collection Systems Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatmen for Potable Water Supply). Plant layout; Hydraulic considerations.		40	SY							
Population forecast; Water demand for various purposes; Estimation o wastewater quantity. Variation in quantity of water and wastewater. Water Supply/Distribution Systems. Wastewater Collection Systems Philosophy of treatment; Unit operations and processes; Physical chemical and biological methods Water Characteristics; Sequencing o unit operations and processes; (Surface and Ground Water Treatmen for Potable Water Supply). Plant layout; Hydraulic considerations.	MODILE I. Wa	ter den	nand and	1 its Tree	tment					
Hydraulic considerations.	Population fore wastewater qua Water Supply, Philosophy of chemical and unit operations for Potable Wa	ecast; W antity. V /Distribu treatm biologica s and pu ter Sup	ater den ariation ution Sy ent; Un al metho ocesses; pply). Pla	hand for in quanti vstems. W it operated ods Water (Surface nt layout	various p ty of wate Wastewate cions and c Charact and Gro	ourpo er and er C 1 pr erist ound	oses; E d wast ollectio ocesse ics; So Wate	Estimation of ewater. on Systems. es; Physical, equencing of er Treatment		
MODILLE II. Induction to Westernets " Muset and	Hydraulic cons	ideratio	ns.	7		A				

Domestic Wastewater Treatment, Wastewater characteristics; Primary, secondary and tertiary treatment. Physical Unit Processes: Screening; Comminutors and Macerators. Grit Removal: Conventional and aerated grit chambers. Equalization; Primary Sedimentation. Chemical Unit Processes: Coagulation Flocculation; Filtration; Disinfections; Aeration and Gas transfer; Precipitation; Softening;

Adsorption and Ion exchange; Membrane processes.

MODULE III: Aerobic Treatment of wastewater

Biological Unit Processes: Aerobic treatment; Suspended growth aerobic treatment processes. Activated sludge process, Design considerations. Activated sludge process and its modifications; Secondary clarifier design considerations. Attached growth aerobic processes; Tricking filters, High rate and low-rate trickling filters Rotating biological contactors (RBC). Oxidation Ponds: Aerobic, anaerobic and facultative ponds. Integrated Fixed-Film Activated Sludge (IFAS), Moving Bed

Biofilm Reactor (MBBR).

MODULE IV: Anaerobic Treatment and Tertiary treatment

Anaerobic treatment: Mechanism of anaerobic treatment of wastewater. Suspended growth process. Anaerobic treatment: Attached growth, fluidized bed and up-flow anaerobic sludge blanket (UASB) systems. Disinfection: Physical and Chemical methods.

Tertiary Wastewater Treatment: Filtration, Carbon Adsorption Chemical Phosphorous removal, Biological Phosphorus removal. Nitrogen Control:

Nitrification, denitrification, Ammonia stripping.

MODULE V: Sludge Treatment and disposal methods

Sludge Treatment: Sources and Characteristics of Various Sludges, Solids Computations. Thickening: Flotation, Gravity thickening, Stabilization: Aerobic and anaerobic sludge digestion. Sludge Conditioning: Chemical and Heat treatment. Sludge Dewatering: drying beds, continuous belt filter press (CBFP). Reduction: Incineration. Landfilling, Dedicated Land Disposal, Utilization, Land Application of

Biosolids, Sludge Disposal Regulations.

Text books

- 1. Mackenzie L. Davis, David A. Cornwell, Introduction to Environmental Engineering-McGraw Hill (2022)
- 2. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G. Environmental Engineering, McGraw Hill International (1985)

Reference books

- 1. Nicholas P. Cheremisinof, Handbook of Water and Wastewater Treatment Technologies-Butterworth-Heinemann (2001).
- 2. C.S. Rao, Environmental Pollution Control Engineering, New Age International, (2007).

3. Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, 4th Edn., McGraw Hill Education India, (2004).

COURSE CONTENTS AND LECTURE SCHEDULE							
NT -		No. of					
INO.		Hours					
	MODULE 1 (7 Hours)						
1.1	Population forecast; Water demand for various purposes; Estimation of wastewater quantity.	1					
1.2	Variation in quantity of water and wastewater.	1					
1.3	Water Supply/Distribution Systems.	1					
1.4	Wastewater Collection Systems.	1					
1.5	Philosophy of treatment; Unit operations and processes; Physical, chemical and biological methods	1					
1.6	Water Characteristics; Sequencing of unit operations and processes; (Surface and Ground Water Treatment for Potable Water Supply).	1					
1.7	Plant layout; Hydraulic considerations.	1					
	MODULE II (7 Hours)						
2.1	Domestic Wastewater Treatment, Wastewater characteristics; Primary, secondary and tertiary treatment.	1					
2.2	Physical Unit Processes: Screening; Comminutors and Macerators.	1					
2.3	Grit Removal: Conventional and aerated grit chambers.	1					
2.4	Equalization; Primary Sedimentation.	1					
2.5	Chemical Unit Processes: Coagulation Flocculation;	1					
2.6	Filtration; Disinfections; Aeration and Gas transfer;	1					
2.7	Precipitation; Softening; Adsorption and Ion exchange; Membrane processes	1					
	MODULE III (7 Hours)						

3.1	Biological Unit Processes: Aerobic treatment; Suspended growth aerobic treatment processes.	1
3.2	Activated sludge process, Design considerations	1
3.3	Activated sludge process and its modifications; Secondary clarifier design considerations.	1
3.4	Attached growth aerobic processes; Tricking filters, High rate and low-rate trickling filters	1
3.5	Rotating biological contactors (RBC)	1
3.6	Oxidation Ponds: Aerobic, anaerobic and facultative ponds	1
3.7	Integrated Fixed-Film Activated Sludge (IFAS), Moving Bed Biofilm Reactor (MBBR)	1
	MODULE IV (8 Hours)	
4.1	Anaerobic treatment: Mechanism of anaerobic treatment of wastewater	1
4.2	Suspended growth process	1
4.3	Anaerobic treatment: Attached growth, fluidized bed and up- flow anaerobic sludge blanket (UASB) systems.	1
4.4	Disinfection: Physical and Chemical methods	1
4.5	Tertiary Wastewater Treatment: Filtration, Carbon Adsorption	1
4.6	Chemical Phosphorous removal	1
4.7	Biological Phosphorus removal	1
4.8	Nitrogen Control: Nitrification, denitrification, Ammonia stripping	1
	MODULE V (6 Hours)	
5.1	Sludge Treatment: Sources and Characteristics of Various Sludges, Solids Computations.	1
5.2	Thickening: Flotation, Gravity thickening, Stabilization: Aerobic and anaerobic sludge digestion,	1
5.3	Sludge Conditioning: Chemical and Heat treatment	1
5.4	Sludge Dewatering: drying beds, continuous belt filter press (CBFP), Reduction: Incineration.	1

5.5	Landfilling, Dedicated Land Disposal, Utilization	1
5.6	Land Application of Biosolids, Sludge Disposal Regulations	1

	CO Assessment Sample Questions
1	The dissolved oxygen in an unseeded sample of diluted wastewater having an initial DO of 9.0 mg/L is measured to be 3.0 mg/L after 5 days. The dilution fraction is 0.03 and reaction rate constant k = 0.22 day ⁻¹ . Calculate (i) 5 day BOD of the waste, (ii) ultimate BOD, and (iii) remaining oxygen demand after 5 days. With neat sketches, explain different types of screens used for
2	wastewater filtration. Write and explain the equations to calculate head loss in screening operations.
3	A town in Kerala is upgrading its primary WWTP to a secondary plant that can meet an effluent standard of 30 mg/L BOD5 and 30 mg/L suspended solids. Assuming that the BOD5 of the suspended solids may be estimated as equal to 65 % of the suspended solids concentration, design a completely mixed activated sludge system. The following data are available from the existing plant. Flow 12960 m3/day; BOD5 = 84.0 mg/L, Assume MLVSS $\overline{K_s}$ 2000 100 $\overline{Mg/LF}$ of BOD5 = 84.0 mg/L, assume the following values day 1 $\overline{K_d}$ 0.050 day 1 \overline{Y} 0.5 mg VSS. mg 1 BOD5 removed
4	With a neat schematic diagram, explain the patterns of carbon flow and energy flow in anaerobic digestion process.
5	Develop volume-mass relationship to estimate the quantity of sludge in wastewater treatment process. Compare aerobic and anaerobic sludge stabilization. Explain alternative sludge disposal techniques.

2401	IICOE	occ	CUPATIONAL HEALTH &					L	Т	Р	J	S	С	Yea Introd	ar of luction
24Cr	240111023				HYGIENE				0	0	0	3	3	20	024
Preamble: Occupational health and industrial hygiene are integral															
components of workplace well-being. This course provides a comprehensive															
exploration of the core concepts, methodologies, and applications required to															
identi	fy, as	sess a	and co	ontrol	occup	ationa	al haz	ard	s. I	rur	th	ern	nor	e, this	course
outlin	les th	ne ba	sics o	of firs	t aid	and	gives	a 1	revi	iew	0	f 1	Ind	ia's st	atutory
frame	work	for we	orkpla	ice saf	ety an	ld hea	lth.								
Prere	quisi	te: Ni	i1												
Cour s	se Ou	itcon	nes: A	fter th	ne com	pletio	n of tl	ne c	ou	rse	th	e s	stuc	lent wi	ll be
CO1	Expl	lain tł	ne fun	ctiona	al unit	s and	activi	ties	of	000	<u>cu</u> 1	pat	ior	al heal	th
	serv	ices.				0 0110	activi		01	00		port			
CO2	Com	prehe	end th	e dive	rse ha	zards	that e	exist	: wi	thi	n	wo	rkp	lace	
000	envi	ronme	ents.	4 4			1			- 1	. 1.		•	1 1	
CO3	Appl	y app gical	ropria hazar	ite stra de	ategies	s to co	ontrol	pny	'S1C	al,	ch	lem	11Ca	and	
	in w	orknl	aces	45											
CO4	Deve	elop le	gal do	cume	ntatior	ı for s	afety	com	plia	anc	e.				
CO5	Appl	y prin	ciples	of fire	st aid	to dive	erse er	nerg	- gen	cy	sce	ena	rio	s.	
					CO -	PO M		IG							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	28	PO)9	PC)1	PO11	PO12
CO1	2	2	0			2						0	`		
	ა ი	い う	2			い い い						-	4 7		4
CO_2	3 2	3 2	3 2			ა 2						-	2 7		2
CO4	3	3	3			3			>			-	2 2		2
C05	3	3	2			3		4	-				2		2
	•	•	_	<u> </u>	Assess	sment	Patt	ern				-	-		-
				Cont	inuou	s Ass	essme	ent					_		
Blo	om's	Cate	gory	Tool	5							E	Cnd	l 	
· · · · · · · · · · · · · · · · · · ·			- •	Test1Test 2Otest1test 2test 2				Oth too	ier ols	Semester Examinatio n					io

Remember Understand

Apply Analyse Evaluate Create

Mark Distribution of CIA									
	ő		ks						
Course Structure [L-T-P-J]	Attendanc	Assignmen t	Test-1	Test-2	Total Mar				
3-0-0-0	5	15	10	10	40				

Total Mark distribution										
Total Marka CIA (Marka) ESE (Marka) ESE Duration										
100	40	ESE (Marks)	Ea	3 hours						
100	End Semester Ex	amination [ESE]: Pat	tern	5 110415						
PATTERN		PART B		ESE						
TATTERN										
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	2 questions will be g from each module, o of which 1 question should be answered Each question can h a maximum of 2 sub divisions. Each question carrie marks. Marks: (5x8 = 40 mat Time: 3 hours	given out nave o es 8 rks)	60						
	SY	LLABUS								

MODULE I: Introduction to occupational health and Legislative frame work

of OSH in India

Concept and spectrum of health- functional units and activities of occupational health services- National and International Organizations in the field of occupational health-Overview of ISO 45001-Occupational Safety Health and Working Conditions Code 2020:Notifyiable diseases as per the code: their effects and prevention-Occupational safety and health standards- Safety and occupational health surveys-Safety officer and safety committee-National Occupational Safety and health advisory board-State Occupational Safety and health advisory board- Inspector cum Facilitators: Appointment and powers-Offenses and penalties under Occupational safety Health and Working Conditions Code 2020.

MODULE II: Recognition and evaluation of Physical hazards

Noise- noise measurement and evaluation -hearing loss – causes -Biological effects of noise exposure. Thermal stress – heat disorders and health effects such as heat exhaustion, hear cramp etc. WBGT index, acclimatization. Vibration –description and measurement of vibration. Vibration control methods. Effects of whole-body vibration on human body and control measures. Ionizing and non-ionizing radiation: hazards and controlling measures- Instruments for Radiation detection and measurement. Purpose of lighting. Advantages of good illumination. Lighting and the work- Standards on lighting and illuminations.

MODULE III: Recognition and evaluation of chemical hazards

Hazardous chemicals: Definition and characteristics-NFPA diamond-MSDS- HAZCHEM code-TREM card-UN classification of hazardous chemicals- Routes of entry of hazardous substances into the body-Effects of toxicants on biological organisms-Toxicological studies- Dose vs Response- Models for dose and response- Threshold limit values-Evaluation of chemical hazards: Methods of Evaluation- process or operation description-Field Survey-Sampling methodology-Sampling instruments- Industrial Hygiene calculations.

MODULE IV: Biological hazards and Principles of First Aid

Classification of Bio hazardous agents –bacterial agents, rickettsial and chlamydial agents, viral agents, fungal, parasitic agents, infectious diseases -Control of biological hazards.

First Aid Principles-Statutory requirement of first aid in factories-Role of the first aider-sequence of action on arrival at scene. ABC of first aid- vital signs of life of an accident victim-CPR- Effect of electricity on human body and first aid-First aid for burns-Wounds and bleeding- Asphyxia-Unconsciousness and shock- Skeletal

injuries.

MODULE V: Control measures
Aims of control-Hierarchy of control measures- Engineering controls: Ventilation systems - purpose of ventilation-general principles ventilation requirements- Physiological and comfort level. Natural ventilation -Dilution ventilation - Mechanical ventilation - Local exhaust ventilation -Ventilation measuring instruments. Fundamentals of hood and duct designs. Standards on ventilation- Respirators: Various types of respirators useful to chemical industry.

Text books

- 1. Daniel A Crowl & Joseph F Louvar, Chemical Process Safety, Second Edition, Prentice-Hall.
- 2. Sam Mannan, Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Vol: 1-3-Butterworth-Heinemann (2004).
- 3. Barbara A. Plog, Patricia J. Quinlan, Fundamentals of Industrial Hygiene (5th edition), National Safety Council Chicago,5th Edition (2001)
- 4. Frank R. Spellman, Industrial Hygiene Simplified-A Guide to Anticipation, Recognition, Evaluation, and Control of Workplace Hazards-Government Institutes (2006).

Reference books

- 1. Jeanne Mager Stellman (ed). Encyclopedia of occupational health and safety. (Four volumes). (Fourth edition). International Labour Office, Geneva. (1998).
- 2. The industrial environment its evaluation and control. DHHS (NIOSH) publication number 74-117, (1973).
- 3. Clayton, C.D. and Clayton, F. Patty's industrial hygiene and toxicology. Wiley New York. (1981).
- 4. Gayle Woodside & Dianna Kocurek, Environmental, Safety and Health Engineering, John Wiley & Sons, New York, (1997).
- 5. Cantlie, James. First aid to the injured. St John Ambulance Association. (1932).
- 6. Yudenich, V.V. Accident first aid, Mir Publishers, Moscow. (1986).
- 7. The Occupational Safety Health and Working Conditions Code

2020, Commercial Law Publishers (India) Pvt.Ltd., New Delhi. COURSE CONTENTS AND LECTURE SCHEDULE

Na		No. of
INO.		Hours
	MODULE 1 (7 hours)	
1.1	Concept andspectrum ofhealth-functionalunitsand activities of occupationalhealthservices	1
1.2	National and International Organizations in the field of occupational health	1

1.3	Overview of ISO 45001	1
1.4	Occupational Safety Health and Working Conditions Code 2020: Notifiable diseases as per the code: their effects and prevention.	1
1.5	Occupational safety and health standards- Safety and occupational health surveys	1
1.6	Safety officer and safety committee-National Occupational Safety and health advisory board- State Occupational Safety and health advisory board	1
1.7	Inspector cum Facilitators: Appointment and powers- Offenses and penalties under Occupational safety Health and Working Conditions Code 2020.	1
	MODULE II (8 hours)	

2.1	Noise- noise measurement and evaluation	1
2.2	hearing loss – causes - Biological effects of noise exposure	1
2.3	Thermal stress – heat disorders and health effects such as	1
	heat exhaustion, hear cramp etc. WBGT index, acclimatization	
2.4	Vibration –description and measurement of vibration	1
2.5	Vibration control methods. Effects of whole-body vibration on human body and control measures	1
2.6	Ionizing and non-ionizing radiation: hazards and controlling	1
2.7	Instruments for Radiation detection and measurement	1
2.8	Purpose of lighting. Advantages of good illumination. Lighting and the work- Standards on lighting and illuminations.	1
	MODULE III (8 hours)	
3.1	Hazardous chemicals: Definition and characteristics-NFPA diamond-MSDS- HAZCHEM code-TREM card- UN classification of hazardous chemicals	1
3.2	Routes of entry of hazardous substances into the body-Effects	1

	of toxicants on biological organisms	
3.3	Toxicological studies- Dose vs Response	1
3.4	Models for dose and response- Threshold limit values	1
3.5	Evaluation of chemical hazards: Methods of Evaluation-	1
3.6	Field Survey-Sampling Methodology-Sampling instruments	1
3.7	Industrial Hygiene calculations.	1
3.8	Industrial Hygiene calculations.	1
	MODULE IV (6 hours)	
4.1	Classification of Bio hazardous agents -bacterial agents, rickettsial and chlamydial agents	1
4.2	viral agents, fungal, parasitic agents, infectious diseases	1
4.3	Control of biological hazards	1
4.4	First Aid Principles-Statutory requirement of first aid in factories-Role of the first aider-sequence of action on arrival at scene ABC of first aid	1
4.5	Vital signs of life of an accident victim-CPR- Effect of electricity on human body and first aid	1
4.6	First aid for burns-Woundsand bleeding- Asphyxia- Unconsciousness and shock- Skeletal injuries	1
	MODULE V (6 hours)	
5.1	Aims of control-Hierarchy of control measures	1
5.2	Ventilation systems - purpose of ventilation-general principles	1
5.3	ventilation requirements- Physiological and comfort level Natural ventilation - Dilution ventilation - Mechanical ventilation - Local exhaust ventilation - Ventilation measuring instruments.	1
5.4	Fundamentals of hood and duct designs.	1
5.5	Fundamentals of hood and duct designs.	1
5.6	Standards on ventilation-Respirators: Various types of respirators useful to chemical industry.	1

1 Discuss the functional units and activities of occupational heal	lth
services.	
Air contains 5 ppm of diethylamine (TLV-TWA of 5 ppm), 20 ppm cyclohexanol (TLV-TWA of 50 ppm), and 10 ppm of propylene ox (TLV- TWA of 2 ppm). Find the mixture TLV-TWA. Are the work overexposed under these conditions?	i of ide ers
An open vessel of 1 m in diameter and 2 m tall is being splas filled with ethyl acetate (C4H8O2) liquid. The vessel takes 30 min fill. The local ventilation rate is 0.50 m ³ /s. a. Estimate the local concentration (in ppm) of ethyl aceta Compare to the TLV. b. Estimate the local concentration (in ppm) if the vessel is cover with a flat metal sheet and the filling is done through a 5-c diameter hole. Compare to the TLV. c. Which filling method do you recommend and why? For both cases T = 25°C and the ambient pressure is 1 atm. T	sh- to tte. red m-
4 Discuss the powers of the inspector appointed for the purpose of administration of provisions under Occupations Safety Health and Working Conditions Code 2020.	al
5 Discuss the process of CPR and its importance.	

2464	TC 2	0	РТІМ	IZAT	ION C)F		L	T	Ρ	J	S	С	Yea Introd	r of uction
5		CHEMICAL						3	0	0	0	3	3	20	24
		PI	ROCE	CSSE	S										
Pream	Freamble: Process optimization is a discipline to evaluate the best														
possible values of process or process sub-system variables to improve its															
efficiency by applying analytical and numerical methods. This course															
aims	aims to familiarize the students with techniques, which are frequently														
applie	d to	optin	nize p	proces	ss or	proc	ess s	ub	-sy	rst	em	v	aria	bles. It	t also
provid	les a	detail	ed co	mpu	tation	al ap	proac	h 1	to	an	aly	ze	an	d desig	n any
chemi	cal p	rocess	s, whe	ere su	ich ar	n appi	roach	is	ap	pro	opr	riat	e.		
Prerec	luisit	e: Nil													
Cours able to	e Out	come	es: Aft	ter th	e com	pletic	on of t	he	CO	ur	se	the	e sti	ıdent w	ill be
CO 1	Iden mod	itify t lelling	he ir and	nport proc	ance cess o	and ptimi	value zation	es	of	m	ati	heı	nat	ical	
CO2	Forr	nulate	e linea	ar an	d non	-linea	r prog	gra	mn	nir	ng :	mo	del	s.	
CO3	Solv linea	e bas ar opti	sic ch imizat	emica tion t	al eng echni	gineer ques	ing pr and a	obl Igo	err ritl	ıs 1m	us is	ing	; lir	near an	d non-
CO4	Solv	e vari	ous n	nultiv	ariabl	e opti	mizati	ion	pr	ob	len	ns.			
CO5	App	ly diffe	erent	optim	nizatio	n tec	hniqu	es	in	ch	em	ica	l er	ngineeri	ng
	proc	ess de	esign.	-			-							0	U
					CO -	PO M	IAPPII	١G							
СО	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	Р	08	P 9	O	Р(0	01	PO11	PO12
CO1	3	3	3									_			2
CO2	3	3	3												2
CO3	3	3	3												2
CO4	- 3	3	3												2
CO5	3	3	3	3	3										2

Assessment Pattern									
Bloom's	Continuo Tools	us Assess	End Semester						
Category	Test1	Test 2	Other tools	Examination					
Remember									
Understand									
Apply									
Analyse									
Evaluate									
Create									

Mark Distribution of CIA	
Theory [L- T]	

Course Structure [L-T-P-J]		Attendanc e	Assignmen t	Test-1	Test-2	Total Marks		
3-0-0-0		5	15	10	10	40		
		Total	Mark distrib	oution				
Total Mark	S	CIA (Marks)	ESE	(Marks)	ES	SE Duration		
100		40	6	50		3 Hrs		
	<u>En</u>	d Semester I	Examination	<u>1 [ESE]: F</u>	Pattern			
PATTERN	F	PART A		PART B		ESE Marks		
PATTERN 1	ATTERN PART A 10 Questions, each question carries 2 marks ATTERN 1 Marks: (2x10 = 20 marks)		1 2 question from each which 1 be an question maximun divisions. Each qu 8 1 Marks: (5) Time: 3 h	ons will the module question swered. can the can the n of the marks. x8 = 40 m ours	be given e, out of Each have a 2 sub- arries	60		
1	otai M	iarks: 20	I OTAL MARK	s: [5x8 =	40 marks			

MODULE I: Introduction to Process optimization & overview of mathematical functions

Scope and hierarchy of optimization, Typical chemical engineering applications of optimization. Statement of an Optimization Problem and its essential features, Classification of Optimization Problems and its essential features. Mathematical modelling of typical chemical engineering optimization problems. Nature and classification of mathematical functions, Graphical representation of univariate and bivariate functions (using MATLAB / Python, etc.). Unimodal functions, determination of convexity and concavity of single and multivariate functions.

MODULE II: Analytical & Numerical methods for unconstrained optimization problems

Analytical methods: Necessary and sufficient conditions for optimum univariate unconstrained functions. Numerical methods: One-dimensional gradient-free search methods (Fixed & accelerated step size, Dichotomous search, Fibonacci search, golden- section method, and quadratic interpolation), One-dimensional gradient search methods (Newton's method, and Quasi-Newton method).

MODULE III: Analytical methods for constrained multivariate optimization problems

Nonlinear programming with equality constraints: method of direct substitution, Lagrange multiplier method, Nonlinear programming with inequality constraints: Kuhn-Tucker conditions for local optimality, Complex method, Rosen's gradient projection method.

MODULE IV: Numerical methods for unconstrained & constrained multivariate optimization problem

Unconstrained multivariate optimization problems: Univariate search, Powell's method, method of steepest descent, Fletcher-Reeve's conjugate-gradient method, Newton's method. Constrained multivariate optimization problems: Basic concepts and graphical representation of Linear programming, graphical solution, Simplex method, and two-phase simplex method.

MODULE V: Optimization case studies in chemical engineering

Economic considerations: Capital cost, operating cost, raw material cost, processing cost etc., Various measures of profitability. Problems solvable analytically: Minimize the capital cost of cylindrical pressure vessel with flat and closed ends-Optimum thermal insulation thickness for cylindrical pipe, Optimum intermediate concentration and time of reaction for series reaction in batch reactors, Optimum pipe diameter for an incompressible fluid, Minimum work done on two and three-stage compressor for isentropic compression of ideal gas. Problems solvable numerically: Optimum reflux ratio for a stageddistillation column, fitting vapor-liquid equilibrium data using nonlinear regression, optimum design of shell-

and-tube heat exchanger, optimization of a thermal cracker using linear programming.

Textbooks

- 1. Edgar T. F., Himmelblau D. M., "Optimisation of Chemical Processes", McGraw Hill.
- 2. Rao S.S., "Optimization: Theory and Applications", Wiley Eastern.

Reference books

- 1. Louis Theodore and Kelly Behan, "Introduction to Optimization for Environmental and Chemical Engineers", CRC press.
- 2. Rajesh Kumar Arora, "OPTIMIZATION Algorithms and Applications", CRC press
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley.
- 4. Beightler C.S., Phillips D.T. & Wilde D.J., Foundations of Optimization, Prentice Hall of India
- 5. Beveridge G.S.G. & Schechter R.S., Optimization: Theory & Practice, McGraw Hill

	COURSE CONTENTS AND LECTURE SCHEDULE	
No		No. of
		Hours
	MODULE 1 (8 hours)	
1.1	Scope and hierarchy of optimization.	1
1.2	Statement of an Optimization Problem and its essential features.	1
1.3	Nature and classification of mathematical functions.	1
1.4	Typical chemical engineering applications of optimization. Mathematical modelling of typical chemical engineering optimization problems.	1
1.5	Typical chemical engineering applications of optimization. Mathematical modelling of typical chemical engineering optimization problems.	1
1.6	Graphical representation of univariate and bivariate functions (using MATLAB / Python etc).	1
1.7	Unimodal functions, determination of convexity and concavity of single and multivariate functions.	1
1.8	Unimodal functions, determination of convexity and concavity of single and multivariate functions.	1
	MODULE II (7 hours)	
2.1	Analytical methods: Necessary and sufficient conditions for optimum of univariate unconstrained functions.	1
2.2	Numerical methods: one-dimensional gradient-free search methods (Fixed & accelerated step size).	1
2.3	Numerical methods: Dichotomous search method.	1
2.4	Numerical methods: Fibonacci search method.	1
2.5	Numerical methods: golden-section method and quadratic interpolation.	1
2.6	Numerical methods: golden-section method and quadratic interpolation.	1

2.7	One-dimensional gradient search methods (Newton's method and	1
	Quasi-Newton method).	
3.1	Nonlinear programming with equality constraints: method of direct	1
3.2	Nonlinear programming with equality constraints: Lagrange multiplier method.	1
3.3	Nonlinear programming with inequality constraints: Kuhn- Tucker conditions for local optimality.	1
3.4	Nonlinear programming with inequality constraints: Kuhn- Tucker conditions for local optimality.	1
3.5	Complex method.	1
3.6	Rosen's gradient projection method.	1
	MODULE IV (7 hours)	
4.1	Unconstrained multivariate optimization problems: univariate search, Powell's method.	1
4.2	Constrained multivariate optimization problems: method of steepest descent.	1
4.3	Fletcher-Reeve's conjugate-gradient method.	1
4.4	Newton's method.	1
4.5	Basic concepts and graphical representation of Linear programming, graphical solution.	1
4.6	Simplex method and two-phase simplex method.	1
4.7	Simplex method and two-phase simplex method	1
	MODULE V (8 hours)	
5.1	Economic considerations	1
5.2	Minimize the capital cost of cylindrical pressure vessel with flat and closed ends, optimum thermal insulation thickness for cylindrical pipe.	1
5.3	Optimum intermediate concentration and time of reaction for series reaction in batch reactor, Optimum pipe diameter for an incompressible fluid.	1
5.4	Minimum work done on two and three-stage compressors for isentropic compression of ideal gas.	1
5.5	Problems solvable numerically: Optimum reflux ratio for a staged- distillation column.	1
5.6	Fitting vapor-liquid equilibrium data using nonlinear regression.	1
5.7	Optimum design of shell-and-tube heat exchanger.	1

5.8	Optimization of a thermal cracker using linear	1
	programming.	

	CO Assessment Sample Questions
	CO Assessment Sample Questions
1	Classify the general optimization problems. State the essential
T	features of optimization problems.
2	Define unimodal function with a mathematical statement. Give a graphicalrepresentation.
3	Find the minimum of $f(x) = x(x-5\pi)$ by one iteration using Quasi-
Ũ	Newton's method with initial point 2 and step size 0.01
4	A toy manufacturing organization manufactures two types of toys A and B. Both the toys are sold at Rs.25 and Rs.20 respectively. There are 2000 resource units available every day from which toy A requires 20 units while toy B requires 12 units. Both of these toys require a production time of 5 minutes. Total working hours are 9 hours a day. Formulate and solve the optimization problem to maximize the profits.
_	Formulate the mathematical equations to find the Optimum thermal
5	insulation thickness for the cylindrical pipe.

0401		PET	PETROLEUM REFINING AND					Т	Р	J	S	С	Yea Introd	r of luction	
24CH	1045	PET TEC		HEMICAL 3 LOGY					0	0	0	3	3	20	24
Prean	nble: 7	This c	ourse	e intro	duces	s stud	ents	to t	he	co	nc	ep	ts	of petr	oleum
refine	ry ope	ration	is tha	t are ı	used f	or ap	olicat	ions	s in	l cl	hei	nic	cal	engine	eering.
This	course	e sur	nmar	izes v	variou	s pe	troleu	ım	ref	in	ery	, (ope	eration	s like
preliminary, primary and secondary. It also explains the classification an										on and					
evaluation of crude oil, treatments of petroleum products their properties										erties,					
applications and test methods.											ŗ				
Prerequisite: Nil															
Course Outcomes: After the completion of the course the student will be able to															
CO1	Reviev oil.	w the	origir	ı, vario	ous ex	plorat	ion a	nd r	eco	ove	ery	me	eth	ods of	crude
CO2	Outlin produ	ne the acts ai	mod nd the	ern int e proc	tegrate ess en	ed pet nploye	roleu ed.	m re	efin	ner	y, :	its	fee	edstock	Ξ,
CO3	Sumr	narize	e diffe	rent p	etrole	um ba	ased j	prod	uc	ts	an	d t	he	ir uses	•
CO4	Expla condi relati	un re tions, on be	fining feeds ⁻ tweer	g proc tock a n diffei	ess co ind ca rent p	overin atalyst rocess	ig op : sele s para	erat ctio ame	ing n, ter:	g c pro s.	les od	cri uct	pti t y	on an ield ar	d 1d the
CO5	Differ	entiat	e bet	ween	petrol	eum	and j	petro	och	en	nic	al	pro	oducts	and
	explai	in vari	ious p	petroch	nemica	al pro	ducts	, the	eir	m	an	ufa	ctı	ire and	l uses.
~~					CO - P			G					_		
CO	PO1	PO2	РОЗ	PO4	PO5	P06	PO 7	PC)8	P)9	РО 0	1	PO11	PO12
CO 1	3					2	2								2
CO 2	3					2	2								2
CO 3	3						2								2
CO 4	3					2	2								2
CO 5	3					2	2								2
				A	ssessn	nent	Patte	ern							
Blo	om's (Categ	ory	Conti Tools	nuou	s Ass	essm	ent				Er	ıd	Seme	ster
				Tes	st1	Tes	st 2	Oth too	er ls				Aa.	mmat	1011
Reme	mber								-						
Unde	rstand	L													
Apply]								
Analy	se														
Evalu	ate														
Creat	е														

			Mark Di	stributio	n of CIA				
			e		Theory [I	- T]			KS
Course Structure [L-T-P-J]			Attendanc	Assignmen t	Test-1	Total Mar			
3-0-0-0 5			5	15	10		10		40
			Total M	ark distr	ibution				
Total Ma	rks	CIA	(Marks)	ES	E (Marks)		E	SE Du	ration
100			40		60			3	
	End	Sem	ester Ex	aminatio	on [ESE]:	Pat	tern		
PATTERN	F	PART	Α		PART B			ESE	Marks
PATTERN 1	10 Qu each questi marks Marks marks	2 quest from ea of whi should Each q a maxi division Each q 8 Marks: Time: 3	ions will l ach modu ich 1 q be an uestion ca imum of ns. uestion c marks. (5x8 = 40 hours	ne gi ule, jues swe an h 2 arrio mar	iven out tion red. nave sub es	6	50		
	Tota	l Maı	rks: 20	Total Ma marks]	rks: [5x8	= 4()		
			SY	LLABUS					
MODULE I	: Origiı	n and	l compo	sition					

Origin and formation of crude oil. Oil exploration and drilling. Storage and transportation of crude oil and products. Classification, Composition and Evaluation of oil stock. Status of Petroleum industry in India. Classification of petroleum refinery.

MODULE II: Preliminary processing and Primary refinery operations Preliminary petroleum processing-Impurities in crude oil, Dehydration and desalting of crude-Electric Desalter-, Process description, factors affecting the electric desalter. Pipe still furnaces and its operations. Distillation of crude- Prefractionator, Atmospheric topping unit, Vacuum distillation unit.

MODULE III: Catalytic conversion and quality upgradation

Thermal Conversion process: Process description of Thermal cracking, Visbreaking, Coking (delayed coking). Process description and process variables of catalytic cracking, Process description and process variables of fluid Catalytic cracking unit. Process description and applications of Hydro cracking. Process description of catalytic reforming. Process description of alkylation process- sulphuric acid alkylation. Process description of isomerization process.

MODULE IV: Treatment of gasoline

Treatment of gasoline- Copper Chloride process and Merox sweetening. Production and treatment of L.P.G. Diesel Hydro desulphurisation (DHDS) and production of Ultra low sulphur Diesel (ULSD), Bharath stage norms of Diesel and Gasoline. Production and treatment of Lube- Phenol extraction. Properties, test methods and uses of Refinery products such as L.P.G, Gasoline, Jet fuel, Kerosene, Diesel fuel,

Lube oil and Bitumen.

MODULE V: Petrochemicals

Classification of petrochemicals: light, medium and heavy, Manufacture of Methanol from Synthesis Gas, manufacture of formaldehyde from methanol, manufacture of Low density polyethylene (LDPE) and high density polyethylene (HDPE). Manufacture of Benzene, Toluene and Xylene by catalytic reforming.

Text books

- 1. Baskara Rao B.K, Modern Petroleum Refinery Process, Oxford& IBM
- 2. Dr.Ram Prasad, Petroleum Refining Technology, Khanna Publishers
- Dryden C. E., Outlines of Chemical Technology, East-West Press, 2008
- 4. M. Wells, Handbook of Petrochemicals and Processes, 2nd Ed., Ashgate Publishing Co., 1999.

Reference books							
1. Uttam Ray Chaudhuri, Fundamentals of Petroleum and							
Petrochemical Engineering, CRC Press							
2. Dr.Kochu Baby Manjooran S, Modern Petroleum Chemis	stry.						
3. James H.Garry Glenn E. Handwerk Mark J.Kaiser	3. James H.Garry Glenn E. Handwerk Mark J.Kaiser,						
Petroleum Refinery Technology and Economics, CRC	Press,						
Taylor and Francis group.							
4. I D Mall, Petrochemical Process technology, Macmillan							
5. Nelson W.L, Petroleum Refinery Engineering, McGraw Hill							
6. Gopala Rao M & Sitting M, Drydens Outline of Chemical							
Technology, Affiliated East West Press							
COURSE CONTENTS AND LECTURE SCHEDUL	Ē						
No	No. of						
	Hours						
MODULE 1 (6 hours)							
1.1 Origin and formation of crude oil.	1						
1.2 Oil exploration and drilling.	1						

1.3	Storage and transportation of crude oil and products.	1
1.4	Classification, Composition and Evaluation of oil stock.	1
1.5	Status of Petroleum industry in India.	1
1.6	Classification of petroleum refinery.	1
	MODULE II (6 hours)	
2.1	Preliminary petroleum processing-Impurities in crude oil	1
2.2	Dehydration and desalting of crude-Electric Desalter-, Process	1
	description, factors affecting the electric desalter.	
2.3	Pipe still furnaces and its operations.	1
2.4	Distillation of crude- Prefractionator	1
2.5	Atmospheric topping unit	1
2.6	Vacuum distillation unit.	1

	MODULE III (8 hours)	
3.1	Thermal Conversion process: Process description of Thermal	1
	cracking, Visbreaking,	
3.2	Process description of Coking (delayed coking).	1
3.3	Process description and process variables of catalytic cracking,	1
3.4	Process description and process variables of fluid Catalytic cracking unit.	1
3.5	Process description and applications of Hydro cracking.	1
3.6	Process description of catalytic reforming.	1
3.7	Process description of alkylation process- sulphuric acid alkylation.	1
3.8	Process description of isomerization process.	1
	MODULE IV (7 hours)	
4.1	Treatment of gasoline- Copper Chloride process and Merox sweetening.	1
4.2	Production and treatment of L.P.G. Diesel Hydro desulphurisation (DHDS)	1
4.3	Production of Ultra low sulphur Diesel (ULSD),	1
4.4	Bharath stage norms of Diesel and Gasoline.	1
4.5	Production and treatment of Lube- Phenol extraction.	1
4.6	Properties, test methods and uses of Refinery products such as	1
4.7	L.P.G, Gasoline, Jet fuel, Kerosene. Properties, test methods and uses of Refinery products such as	1
	MODULE V (8 hours)	
5.1	Classification of petrochemicals: light, medium and heavy.	1
5.2	Manufacture of Methanol from Synthesis Gas	1

5.3	Manufacture of formaldehyde from methanol	1
5.4	Manufacture of Low density polyethylene (LDPE)	1
5.5	Manufacture of and high density polyethylene (HDPE).	1
5.6	Manufacture of Benzene by catalytic reforming.	1
5.7	Manufacture of Toluene by catalytic reforming.	1
5.8	Manufacture of Xylene by catalytic reforming.	1

	CO Assessment Sample Questions
1	Differentiate geophysical and geochemical prospecting and explain any four types of geophysical prospecting techniques for oil exploration.
2	Explain atmospheric distillation of crude oil with a simplified flow diagram.
3	Describe the properties and uses of any three petroleum products.
4	A chemical process is used to convert straight run naphtha distilled from crude oil into high octane liquid products which are premium blending stocks for high octane gasoline. Explain the process with a neat sketch and mention the catalysts used.
5	With a neat flowsheet, explain the manufacture of Methanol from Synthesis Gas.

24CHI655	PROCESS PLANT UTILITIES	L	Т	Ρ	J	S	С	Year of Introductio n
		3	0	0	0	3	3	2024

Preamble: The course focuses on understanding the important technical fundamentals of chemical process plant utilities. The course covers process utility systems, fuels and compressed air systems, process steam systems, piping networks, valves & pumps, refrigeration, ventilation and air conditioning systems. The emphasis on the fundamentals will help the student to understand the concepts and apply them accordingly.

Prerequisite: Nil.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Describe	major	types,	processes	and	associated	equipments
	of utility	system	s emplo	oyed in indu	stries	5.	

- **CO 2** Compute the power rating of equipments and select the rating of instruments and process auxiliaries.
- **CO 3** Perform mathematical calculations involved in steam generation, psychrometry and refrigeration operations.
- **CO 4** Explain different types of compressors, valves, pumps, and their requirements in process industries.
- **CO 5** Perform piping network design and describe process control and instrumentation diagram and its applicability.

CO - PO MAPPING												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
										0		
CO 1	3	2	1									2
CO 2	3	3	3									2
CO 3	3	1	3									2
CO 4	3	1	1									2
CO 5	3	2	1									2
	Accessment Bottown											

	ASSESS	ment Fatt	ern	
Bloom's Category	Continuou Tools	s Assessn	End	
	Test1 Test 2 Other tools		Semester Examinatio n	
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				

Mark Distribution of CIA

Course Structure [L-T-P-J] 3-0-0-0	e		ks Ks		
	Attendanc	Assignmen t	Test-1	Test-2	Total Mark
3-0-0-0	5	15	10	10	40

		Total M	ark distribution						
Total Ma	arks	CIA (Marks)	ESE (Marks)	ES	ESE Duration				
100		40	60		3 hours				
End Semester Examination [ESE]: Pattern									
PATTERN	ESE Marks								
PATTERN 1	10 (each ques carr Mar mar	Questions, stion ies 2 marks ks: (2x10 =20 ks)	 2 questions will be g from each module, of which 1 ques should be answe Each question can h a maximum of 2 divisions. Each question carrie 8 marks. Marks: (5x8 = 40 mar Time: 3 hours 	iven out tion red. nave sub es	60				
	Tota	l Marks: 20	Total Marks: [5x8 = 40 marks]						
	1	SY	LLABUS						
MODULE I	: Proc	ess utility sys	tems						

Process Utility Systems: Classification of process utility systems, Importance of process utilities in chemical industries and plants. Water as a utility in process industries: Sources of water, hard and soft water, requisites of industrial water and its uses, methods of water treatment, storage and distribution of water, recycle and conservation of water. Cooling Tower: Types and performance evaluation.

MODULE II: Fuels and compressed air systems

Introduction to Fuels: Types, Proximate and ultimate analysis, Calorific value and its calculation. Compressed air system: Types, construction and working: Reciprocating (Single and double), centrifugal and gear compressors, fans and blowers. Power requirement and performance calculations. Vacuum Systems: Basic Concepts of vacuum and pressure, Components of vacuum system like vacuum chamber, pumps, gauges, valves, seals, and many other subsidiary

components., Vacuum generation and Piping.

MODULE III: Process Steam systems

Steam System: Steam and its importance, Properties of steam, Problems based on enthalpy calculation for wet steam, dry saturated steam and superheated steam. Boilers: Types of steam generators/boilers, Fire tube boilers and water tube boilers, examples, boiler mountings and accessories, boiler performance and its calculation, Analysis of losses, leakage test, Energy conservation opportunities, Boilers Act. Steam handling and distribution: Steam distribution system, Steam economy, Steam traps, Condensate and flash steam recovery system. Waste Heat Recovery:

Classification, commercially viable waste heat recovery devices, Saving potential.

MODULE IV: Piping networks, valves and pumps

Piping network design, Process control and instrumentation diagram. piping networks for water, steam, condensate and air. Colour codes for piping, Chilled Water Insulation Piping, Compressed Air Piping, Water Utility Piping, Cooling Coil Heat Transfer, Anti Fire Pipes and steam piping. Valves: Types of valves, selection criteria of valves for various systems. Pumps: Types of pumps, NPSH requirement.

MODULE V: Refrigeration and ventilation

Refrigeration and Ventilation: Principles of refrigeration, vapour compression and vapour absorption refrigeration cycles, types of refrigerants and their importance. Air conditioning: Air-conditioning system and its components. Insulation: Types of insulation, Selection criteria for insulating materials. Production of cryogenic temperatures. Characteristics of Air-water systems. Humidification and Dehumidification equipments. Exhaust & Ventilation.

Text books

1. F.C. Vibrandt and C.E. Dryden, "Chemical Engineering Plant Design", McGraw Hill, Fifth Edition.

2. Jack Broughton; Process utility systems; Institution of Chem. Engineers, U.K.

3. M.S. Peters and Timmerhaus, "Plant design and Economics for Chemical Engineers", Mc Graw Hill 3rd Edition.

4. Roger Hunt and Ed Bausbacher, "Process Plant layout and Piping Design" PTR Prentice-Hall Inc.

Reference books

1. Nordell,Eskel."Water Treatment for industrial and other uses"

Reinhold Publishing Corporation, New York (1961).

2. Plant Utilities by Dr. Mujawar, Nirali Prakashan Publication.

3. Plant Utilities by D.B. Dhone, Nirali Prakashan Publication.

4. P.L.Balleney, Thermal Enginnering, Khanna Publisher, New Delhi.

No		No. of
		Hours
	MODULE 1 (7 hours)	
1.1	Process Utility Systems: Classification of process utility systems.	1
1.2	Importance of process utilities in chemical industries and plants	1
1.3	Water as a utility in process industries: Sources of water, hard and soft water.	1
1.4	Requisites of industrial water and its uses.	1
1.5	Methods of water treatment.	1
1.6	Storage and distribution of water, recycle and conservation of water.	1
1.7	Cooling Tower: Types and performance evaluation.	1
	MODULE II (8 hours)	
2.1	Introduction to Fuels: Types.	1
2.2	Proximate and ultimate analysis, Calorific value and its calculation.	1
2.3	Compressed air system: Types, construction and working.	1
2.4	Reciprocating (Single and double), centrifugal and gear compressors, fans and blowers.	1
2.5	Power requirement and performance calculations.	1
2.6	Vacuum systems: Basic Concepts of vacuum and pressure,	1
	Pumps, gauges, valves, seals, and many other	1
2.7	subsidiary	*

	components.	
2.8	Vacuum generation and Piping.	1
	MODULE III (8 hours)	

3.1	Steam System: Steam and its importance, Properties of steam.	1
3.2	Problems based on enthalpy calculation for wet steam.	1
3.3	Dry saturated steam and superheated steam.	1
3.4	Boilers: Types of steam generators/boilers, Fire tube boilers and water tube boilers, examples, boiler mountings and	1
3.5	Boiler performance and its calculation, Analysis of losses, leakage test, Energy conservation opportunities, Boilers Act.	1
3.6	Steam handling and distribution: Steam distribution system.	1
3.7	Steam economy, Steam traps, Condensate and flash steam recovery system, Identifying opportunities for energy savings.	1
3.8	Waste Heat Recovery: Classification, Advantages and applications, commercially viable waste heat recovery devices, Saving potential.	1
	MODULE IV (6 hours)	
4.1	Piping network design.	1
	Process control and instrumentation diagram.	1
4.2	Piping networks for water, steam, condensate and air.	1
	Colour codes for piping, Chilled Water Insulation Piping, Compressed Air Piping.	1
4.3	Water Utility Piping, Cooling Coil Heat Transfer, Anti Fire Pipes and steam piping.	1
4.4	Valves: Types of valves, selection criteria of valves for various	1
	Systems. Pumps: Types of pumps, NPSH requirement. MODILE V (7 hours)	

5.1	Refrigeration and Ventilation: Principles of refrigeration. Vapour compression and vapour absorption refrigeration cycles.	1
5.2	Types of refrigerants and their importance. Air conditioning: Air-conditioning system and its components.	1
5.3	Insulation: Types of insulation, Different types of insulating materials and their characteristics, Selection criteria for insulating materials.	1
5.4	Production of cryogenic temperatures.	1
5.5	Characteristics of Air-water systems.	1

5.6	Humidification and Dehumidification equipments.	1
5.7	Exhaust & Ventilation.	1

	CO Assessment Sample Questions
	Identify and describe the major types, processes and associated
	equipments of utility systems employed in industries.
CO1	1. State and explain any seven requirements of a good water
	distribution system.
	2. Differentiate primary and secondary plant utility systems.
	Compute the power rating of equipments and select the
	rating of instruments and process auxiliaries.
	1. Classify different types of vacuum pumps and explain
	performance characteristics.
COO	2. A single stage compressor is used to compress 800 m3 /hr of
02	CO2 measured at 288 K and 1 bar from its initial stage of 0.5
	bar and 300 K to
	a final pressure of 1.5 bars. A volumetric efficiency of 75 % and a
	compression efficiency of 85 % may be assumed. Assuming adiabatic
	compression, calculate the power required for driving the
	compressor, the piston displacement in m3 /s and the discharge
	temperature.

	Perform mathematical calculations involved in steam					
	generation, psychrometry and refrigeration operations.					
	1. Define Psychrometry? Enumerate and explain different					
	psychrometric processes and represent them on a psychrometric					
CO3	chart.					
	2. Distinguish economy and capacity with respect to boilers?					
	List and explain the different types of boilers used in chemical					
	industry.					
	3. A refrigeration system has working temperature of -27°C and					
	37°C. Find out actual COP, if it is 70% of Maximum.					
004	With a neat sketch, explain single acting reciprocating compressor?					
C04	Differentiate reciprocating and rotary compressors.					
	1. State and explain some of the general considerations that					
OOF	should be evaluated when selecting and applying materials for					
005	piping.					
	2. List the types of piping networks for steam and briefly					
	describe their applications.					

									L	Т	Р	J	S	С	Yea	ar of
24C	HE665	5	FUEI	L CELL TECHNOLOG				GΥ							Introd	luction
									3	0	0	0	3	3	20	24
Prea	mble: (One of	f the	most	promi	sing n	lear-	ter	m	tec	hn	olc	ogie	es a	are thos	e based
on fi	uel cell	s, whi	ich co	nvert	chemi	ical er	nergy	/ in	ito	ele	ecti	rica	al (ene	ergy with	higher
efficie	encies a	and fa	r fewe	er envi	ironme	ental e	effec	ts 1	tha	n o	oth	er	op	otio	ns. This	course
is int	ended	to pro	ovide a	an insi	ght in	to the	fue	1 ce	ell	and	1 fe	οcι	ise	s o	on develo	pments
made	e in the	e area	and	the ch	alleng	ges fac	cing	in	its	w	ide	e p	ora	ctic	cal appli	cations.
The	course	also	bring	gs an	overv	iew or	ı fut	ure	e p	ros	spe	cts	s ii	n tl	he devel	opment
and application of fuel cell.																
Prerequisite: Nil																
Cours to:	se Out	comes	s: Afte	er the	compl	etion	of th	ne c	cou	rse	e tł	ne	stı	ıde	nt will b	e able
CO1	Sumn	narize	the f	funda	menta	ls of	ther	mo	dy	nai	ni	cs,	\mathbf{k}	ine	tics and	
COI	transp	port ir	n fuel													
	cells	1.	<u></u>		6.6	1 11										
CO2	Comp	are di	tteren	t types	s of fu		sys	tem	is							
CO3	Calcu	late th	he vai	rious I	losses	in fue	el ce	lls								
CO4	Desig:	n a tu	el cel	l stacl	c for a	given	app	olic	atı	on	_					
CO 5	Distin the co	iguish ontext	the e	expect	ances	of hy	drog	gen	as	a	fue	el a	anc	l ei	nergy ve	ctor in
	of ren	ewable	e ener	gy												
					CO -	PO N	IAPI	PIN	G							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PC)8	P) 9	PC)1	PO11	PO12
CO1	3	3											U			2
CO2	3	3														2
CO3	3	3														2
CO4	3	3	2													2
CO5	3	3														2
				1	Asses	sment	t Pa	tte	rn						1	
				Conti	nuous	Asse	essm	nen	t		_					
Bloon	n's Cat	tegory	7	Fools							E	na	L			Somost
				Test	1	Test 2			Other		e	r			•	Semest
								tools		5	Examination					
Reme	ember															
Unde	erstand	1														
Apply	7															
Analyse																
Evaluate																
Create																

			Theory [L	,- T]			
CourseStructu re [L-T-P-J]		Attendance		Test-1	Test-2	Total Marks	
3-0-0-0		5	15	10	10	40	
		Total N	lark dist	ribution		I	
Total Marks	CIA	(Marks)	ESF	C (Marks)	Т	CSE Duration	
100	201	60		3 hours			
	End Se	emester E	xaminati	on (ESE)	Pattern:		
PATTERN	ART A	PART B			ESE Marks		
Pattern 1 Pattern 1			2 ques given module, 1 questi an Each q have a n sub Each qu 8 Marks n Time	from each out of whi on should swered. uestion can aximum o divisions. estion carr marks. :: (5x8 = 40 narks) e: 3 hours	ch be n f 2 ies	60	
	Tota	l Marks: 20	Total M 40	arks: 5 x 8	; =		
		SY	LLABUS				
IODULE I: Int	roducti	on to fue	el cell te	chnology	7		
`uel Cell and o	conventi	onal proc	esses –	comparis	on; Types	s of Fuel Cell	
Application sce relations, Units; Material Propert	narios; Workir ies, Pro	Advantag ng of a Pl cesses an	es and EM fuel d Operat	disadvan Cell - I ing	tages; Er Major Ce	nergy & powe ll Component	

MODULE II: Thermodynamics and Reaction Kinetics

Thermodynamics: Gibb's free energy -Work potential of fuel; Reversible voltage - NERNST Equation, Voltage and P, T and concentration dependence - examples; Faraday's Laws; Efficiency: thermodynamic, voltage and fuel.

Reaction Kinetics: Electrochemical reaction fundamentals; electrode kinetics; Charge transfer and activations energy; Exchange current density - slow and fast reactions; Potential and equilibrium - galvanic potential; Reaction rate and potential - Butler

Volmer equation & Tafel equation; Exchange Currents and Electrocatalysis.

MODULE III: Charge and Mass Transport

Charge transport resistances; voltage losses; Ionic and electronic conductivities; Ionic conduction in different FC electrolytes: Aqueous, polymeric and ceramic; Diffusive transport & voltage loss: Limiting current density; Nernstian and kinetic effect; Convective transport: flow channels, gas diffusion / porous layer, gas velocity, pressure.

MODULE IV: Stack Design and Fuel Cell Diagnostics

Stack Design: Sizing of a Fuel Cell Stack; Stack Configuration; Uniform distribution of Reactants; Heat removal; Stack Clamping.

Fuel Cell Diagnostics: Polarization Curve, Current Interrupt, AC Impedance Spectroscopy, Pressure drop as a diagnostic tool.

MODULE V: Fuel Cell System Design and Hydrogen Economy

Fuel Cell System Design: Hydrogen-Oxygen Systems, Hydrogen-Air Systems, Fuel Cell Systems with Fuel Processor, System Efficiency. Fuel Cells and Hydrogen Economy: Hydrogen Energy Systems, Hydrogen Energy Technologies, Transition to Hydrogen Economy.

Textbooks

- Ryan P. O'Hayre, Suk-Won Cha, Whitney Colella & Fritz B. Printz, Fuel Cell Fundamentals, John Wiley & Sons, Inc., New Jersey, 2006.
- 2. Frano Barbir. PEM Fuel Cells: Theory and Practice. Elsevier, 2005

Reference books

- Vielstich, W, Gasteiger, H. A. Lamm, A. (Eds): Handbook of Fuel Cells Fundamentals, Technology and Applications. John Wiely & Sons Ltd: NY, 2003; Vols1-4
- 2. Fuel Cell Handbook,7the Edn., EG & G Technical Services, Nov 2004
- 3. Hordeski, M. F. Alternative Fuels: The Future of Hydrogen, The Fairmont Press: Lilburn, GA, 2007.
- 4. Kordesch, K.; Simader, G. Fuel Cells and Their Applications. VCH: 1996
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained. John Wiely & Sons Ltd: Chichester, 1999.
- 6. Andreas Zuttel; Andreas Borgschulte; Louis Schdaptach, Hydrogen as a future

energy carrier, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2008 COURSE CONTENTS AND LECTURE SCHEDULE

No.	
-----	--

	MODULE 1 (7 hours)	
1 1	Introduction to Fuel Cell, Fuel Cell and conventional	1
1.1	processes	
	– comparison.	
1.2	Types of Fuel Cells.	1
1.3	Application scenarios, Advantages and disadvantages.	1
1.4	Energy & power relations, units.	1
1.5	Working of a PEM fuel Cell.	1
1.6	Major Cell Components and Material Properties of	1
	PEMFC.	
1.7	Processes and Operating Conditions of PEMFC.	1
	MODULE II (8 hours)	

2.1	Gibb's free energy-Work potential of fuel, Reversible voltage	1
	– NERNST Equation.	
2.2	Voltage and P, T and concentration dependence – examples.	1
2.3	Faraday's Laws, Efficiency: thermodynamic, voltage and	1
2.4	Electrochemical reaction fundamentals, electrode kinetics.	1
2.5	Charge transfer and activations energy.	
2.6	Exchange current density - slow and fast reactions, Potential	1
	and equilibrium - galvanic potential.	
2.7	Reaction rate and potential - Butler Volmer equation & Tafel	1
	equation.	
2.8	Exchange Currents and Electrocatalysis.	1
	MODULE III (7 hours)	
3.1	Charge transport resistances, voltage losses.	1
3.2	Ionic and electronic conductivities.	1
3.3	Ionic conduction in different FC electrolytes: aqueous, polymeric and ceramic	1
3.4	Diffusive transport & voltage loss: Limiting current density.	1
3.5	Nernstian and kinetic effect.	1
3.6	Convective transport: flow channels.	1
3.7	gas diffusion/porous layer, gas velocity, pressure.	1
	MODULE IV (7 hours)	
4.1	Sizing of a Fuel Cell Stack.	1
4.2	Sizing of a Fuel Cell Stack.	1
4.3	Stack Configuration.	1
4.4	Uniform distribution of Reactants.	1

4.5	Heat removal, Stack Clamping.	1			
4.6	Polarization Curve, Current Interrupt.	1			
4.7	AC Impedance Spectroscopy, Pressure drop as a diagnostic	1			
	tool.				
MODULE V (7 hours)					
5.1	Hydrogen-Oxygen Fuel Cell Systems.	1			
5.2	Hydrogen-Air Fuel Cell Systems.	1			
5.3	Fuel Cell Systems with Fuel Processor.	1			
5.4	System Efficiency.	1			
5.5	Hydrogen Energy Systems.	1			
5.6	Hydrogen Energy Technologies.	1			
5.7	Transition to Hydrogen Economy.	1			

	CO Assessment Sample Questions
1	 A direct methanol fuel cell uses methanol (CH₃OH) as fuel instead of hydrogen: CH₃OH + 3/2 O₂→ CO₂ + 2H₂O(liq)

	Calculate the standard-state reversible potential for a direct methanol
	fuel cell and standard state Gibbs free energy change of the reaction. Also
	calculate the reversible voltage of the fuel cell operating at a temperature
	350 K. The entropy of the reaction at 350 K is given – 82 J/(mol K). The
	standard state potential of half reaction is given below:
	$CO_2 + 6H^+ + 6e \leftrightarrow CH_3OH + H_2O$ $E_0 = +0.03 V$
	$O_2 + 4H^+ + 4e \leftrightarrow 2H_2O \qquad E_0 = \pm 1.229 \text{ V}$
2	Classify different types of fuel cells.
	Consider the two fuel cells, Fuel cell-1 (Area 8 cm ² and resistance 0.15
3	Ω) and Fuel cell-2 (Area 20 cm ² and resistance 0.1 Ω). Determine which
Ŭ	fuel cell is subjected to larger ohmic voltage loss, at a current density of
	3 A/cm^2 .

Fuel cell is used for power backup having voltage 24 V. Design a
hydrogen - air fuel cell stack to produce a power output of 10 kW.
Following data are provided:

	Umu	value	
Fuel	-	Hydrogen	
Oxidant	-	Air	
Temperature	K	333	
Pressure	kPa	101.3	
Gas constant, R	J/(mol K)	8.314	
Transfer coefficient, α	-	1	
No. of electrons involved, n	15	2	
Faraday's constant, F	C/mol	96,485	
Current loss, iloss	A/cm^2	0.002	
Reference exchange current density, i ₀	A/cm ²	3 x 10 ⁻⁶	
Limiting current density, i _L	A/cm ²	1.6	
Internal resistance, R _i	Ohm-cm ²	0.15	
	FuelOxidantTemperaturePressureGas constant, RTransfer coefficient, α No. of electrons involved, nFaraday's constant, FCurrent loss, i_{loss} Reference exchange current density, i_0 Limiting current density, i_L Internal resistance, R_i	Fuel-Oxidant-TemperatureKPressurekPaGas constant, RJ/(mol K)Transfer coefficient, α -No. of electrons involved, n-Faraday's constant, FC/molCurrent loss, i_{loss} A/cm²Reference exchange current density, i_0 A/cm²Limiting current density, i_L A/cm²Internal resistance, R_i Ohm-cm²	Fuel-HydrogenOxidant-AirTemperatureK333PressurekPa101.3Gas constant, RJ/(mol K)8.314Transfer coefficient, α -1No. of electrons involved, n-2Faraday's constant, FC/mol96,485Current loss, i_{loss} A/cm²0.002Reference exchange current density, i_0 A/cm²3 x 10 ⁻⁶ Limiting current density, i_L A/cm²1.6Internal resistance, R_i Ohm-cm²0.15

24CH	E675	НҮ	DRC TEC	GEN I CHNOI	ENER JOGY	RGY		L	Т	Р	J	S	С	Yea Intro	ur of ductio n
								3	0	0	0	3	3	20	24
Pream	ble: Tł	his co	ourse	e provi	des a	comp	orehe	nsive	e k	no	wl	edg	ge	of hyd	rogen
production, storage and transportation. The course will provide a broad															
understanding of hydrogen as an energy carrier, the way it will play an															
important role in various sectors towards decarbonisation. The course															
also covers the classification and working of fuel cells.															
Course	e Outc	omes	: Aft	er the	comp	letion	of th	e co	urs	e 1	hε	e st	ud	lent wi	ll be
able to		0 0 0	• • • • • •	01 0110	comp		01 011	0 00							
CO 1	Sumr	narizo	e the	impor	rtance	of hy	droge	en eo	con	om	ıy.				
CO 2	Expla	in di	fferer	nt metl	nods d	of hyd	roger	n pro	du	cti	on	•			
CO 3	Desci	ribe	diffe	ent te	echnic	ques	of hy	/drog	ger	ı s	sto	rag	ge	and v	arious
	safety	y cha	lleng	es in l	iydrog	gen st	orage	2.							
CO 4	Desci	ribe v	rariou	is met	hods	for hy	droge	en tr	an	spo	ort	atio	on	•	
CO 5	Expla	in th	e va	rious u	ises o	f hydr	ogen	ene	rgy	•					
				С	О-Р	O MA	PPIN	G							
СО	PO1	PO2	PO3	8 PO4	PO5	PO6	PO7	7 P(28	P	09	РО 0)1	PO11	PO12
CO 1	3	2				2									1
CO 2	3	2				2									1
CO 3	3	2				2									1
CO 4	3	2				2									1
CO 5	3	2				2									1
				As	sessn	nent I	Patte	rn							
Bloc	om's C	ateg	ory	Conti Tools	nuou	s Ass	essm	ient				Eı	nd	Seme	ster
		C	•	Tes	st1	Tes	st 2	Oth too	ier ols			E	xa	minat	10 n
Remem	ıber]								
Understand]								
Apply]									
Analyse															
Evaluate															
Create															

	Mark Di	istributio	n of CIA		
	e U		,- T]	X X	
Course Structure [L-T-P-J]	Attendanc	Assignmen t	Test-1	Test-2	Total Marl
3-0-0-0	5	15	10	10	40

Total Mark distribution

Total Marks	5	CIA (Marks)	ESE (Marks)	ESF	Duration
100		40	60	3	hours
	<u>En</u>	<u>d Semester Ex</u>	amination [ESE]: Pat	tern	
PATTERN		PART A	PART B		ESE Marks
PATTERN 1	10 ea ca M =2	O Questions, ach question arries 2 marks arks: (2x10 20 marks) otal Marks: 20	 2 questions will be g from each module, of which 1 quest should be answere Each question can h a maximum of 2 divisions. Each question carrit 8 marks. Marks: (5x8 = 40 marks) Total Marks: [5x8 = marks] 	iven out stion ered. nave sub es es rks)	60
		SY	LLABUS		

MODULE I : Introduction to Hydrogen Energy

Hydrogen as an Energy Vector- Global Context and Necessity, Paris CO₂ Emission Reduction Commitment, Hydrogen Economy- Decarbonisation of the Economy, road to the Hydrogen Economy. Properties of hydrogen as fuel. General introduction to infrastructure requirement for hydrogen production, storage, dispensing and utilization, and hydrogen production plants.

MODULE II : Hydrogen Production

Hydrogen production pathways: Thermal process-Steam reformation, Advanced Methods of Steam Reforming, Partial Oxidation Method for Hydrogen Production. Electrochemical- Electrolysis, photo electro chemical method. Thermo- chemical water splitting. Biological process : hydrogen production from microbial biomass conversion- gasification, pyrolysis.

MODULE III : Hydrogen storage and safety

Underground Hydrogen Storage, compressed storage, Composite cylinders, Glass micro sphere storage, Zeolites, Metal hydride storage, chemical hydride storage and cryogenic storage. Hydrogen safety aspects, backfire, pre-ignition, hydrogen emission NOx control techniques and strategies.

MODULE IV : Transportation of hydrogen

Hydrogen Transportation via Hydrogen Pipelines, Long Distance Hydrogen Transmission, transportation via road, ships and in form of Liquid Organic Hydrogen Carriers (LOHC), hydrogen transported as ammonia, liquefied hydrogen (LH₂) transportation, Hydrogen Refuelling Stations.

MODULE V : Hydrogen usage

Overview of fuel cells, Alkaline fuel cells, Proton exchange membrane fuel cells, Methanol fuel cells, Phosphoric acid fuel cells, Molten carbonate fuel cells, Solid oxide fuel cells, Fuel cell comparison, Hydrogen combustion engines, Hydrogen turbines, Hydrogen gas burner, Gas engine combined heat and power plants.

Text books

- 1. Gupta, R. B., Hydrogen Fuel: Production, Transport and Storage, CRC Press, Taylor & Francis Group, 2009.
- 2. Global Hydrogen Review 2021, IEA (2021),Paris, https://www.iea.org/reports/globalhydrogen-review-2021
- 3. AgataGodula-Jopek, Hydrogen Production by Electrolysis, Wiley-VCH, Germany, 2015
- 4. Tzimas, E., Filiou, C., Peteves, S.D., &Veyret, J.B. "Hydrogen storage: state-of- the-art and future perspective. Netherlands": European Communities, 2003.
- 5. Principles of Fuel Cells by Xianguo Li, Taylor & Francis.

Reference books

- 1. Michael Hirscher, "Handbook of Hydrogen Storage", Wiley-VCH, 2010.
- 2. Electrochemical Methods by A.J. Bard and L.R.Faulkner, John Wiley & Sons, Inc.
- 3. Fuel Cells: From Fundamentals to Applications by S Srinivasan, Springer.

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1 (6 hours)	
1.1	Hydrogen as an Energy Vector- Global Context and Necessity, Paris CO ₂ Emission Reduction Commitment.	1
1.2	Hydrogen Economy- Decarbonisation of the Economy, road to the Hydrogen Economy.	1

1.3	Properties of hydrogen as fuel	1
1.4	General introduction to infrastructure requirement for hydrogen production, storage, dispensing and utilization, and hydrogen production plants.	1
1.5	General introduction to infrastructure requirement for hydrogen production, storage, dispensing and utilization, and hydrogen production plants.	1
1.6	General introduction to infrastructure requirement for hydrogen production, storage, dispensing and utilization, and hydrogen production plants.	1
	MODULE II (7 hours)	
2.1	Hydrogen production pathways: Thermal process- Steam reformation.	1
2.2	Advanced Methods of Steam Reforming.	1
2.3	Partial Oxidation Method for Hydrogen Production.	1
2.4	Electrochemical- Electrolysis, photo electro chemical method.	1
2.5	Thermo- chemical water splitting.	1
2.6	Biological process : hydrogen production frommicrobial biomass conversion- gasification, pyrolysis.	1
2.7	Biological process : hydrogen production frommicrobial biomass conversion- gasification, pyrolysis.	1
	MODULE III (8 hours)	
3.1	Underground Hydrogen Storage, Compressed Storage.	1
3.2	Composite Cylinders, Glass Micro Sphere Storage,	1
3.3	Zeolites, Metal Hydride Storage,	1
3.4	Chemical Hydride Storage	1

3.6	Cryogenic Storage.	1	
3.7	Hydrogen Safety Aspects, Backfire, Pre-Ignition,	1	
3.8	Hydrogen Emission Nox Control Techniques And Strategies.	1	
MODULE IV (6 hours)			
4.1	Hydrogen Transportation via Hydrogen Pipelines,	1	

4.2	Long Distance Hydrogen Transmission, transportation via road, ships and in form of Liquid Organic Hydrogen	1
4.3	Long Distance Hydrogen Transmission, transportation via road, ships and in form of Liquid Organic Hydrogen	1
4.4	Long Distance Hydrogen Transmission, transportation via road, ships and in form of Liquid Organic Hydrogen Carriers (LOHC),	1
4.5	Hydrogen transported as ammonia, liquefied hydrogen (LH2) transportation, Hydrogen Refuelling Stations.	1
4.6	Hydrogen transported as ammonia, liquefied hydrogen (LH2) transportation, Hydrogen Refuelling Stations.	1
MODULE V (9 hours)		
5.1	Overview of fuel cells, Alkaline fuel cells.	1
5.2	Proton exchange membrane fuel cells.	1
5.3	Methanol fuel cells.	1
5.4	Phosphoric acid fuel cells.	1
5.5	Molten carbonate fuel cells.	1
5.6	Solid oxide fuel cells, Fuel cell comparison.	1
5.7	Hydrogen combustion engines, Hydrogen turbines.	1
5.8	Hydrogen combustion engines, Hydrogen turbines.	1
5.9	Hydrogen gas burner, Gas engine combined heat and power plants.	1
1Explain the importance of hydrogen economy.2Differentiate between gasification and pyrolysis.3Describe any one hydrogen storage method and mention safety challenges associated with hydrogen storage.4"Ammonia can serve as a clean hydrogen energy storage		CO Assessment Sample Questions
--	---	--
2Differentiate between gasification and pyrolysis.3Describe any one hydrogen storage method and mention safety challenges associated with hydrogen storage.4"Ammonia can serve as a clean hydrogen energy storage	1	Explain the importance of hydrogen economy.
 Bescribe any one hydrogen storage method and mention safety challenges associated with hydrogen storage. "Ammonia can serve as a clean hydrogen energy storage 	2	Differentiate between gasification and pyrolysis.
4 "Ammonia can serve as a clean hydrogen energy storage	3	Describe any one hydrogen storage method and mention safety challenges associated with hydrogen storage.
medium". Justify	4	"Ammonia can serve as a clean hydrogen energy storage medium". Justify
the statement.		the statement.

5	List out different types of fuel cells and explain any one in detail.
---	---

24CHI	E685	NAI	NOMA	TER	IALS	AND		L	Т	Р.	J	S	С	Yea Introd	r of luction
	NA	ANOT	rechnology30							0 0 3 3 2024					
Pream	ble: N	lanote	echnol	logy h	as en	nerged	as a	n ir	npo	orta	nt	а	nd	excitii	ng area
in scie	ence	and e	engine	ering.	It p	rovide	s pro	omis	es	in	m	ıa	ny	techn	ological
advano	emen	ts wit	h wid	e rang	ge of a	applica	tion f	field	s. ′	The	co	bu	rse	e gives	a basic
introdu	uction	to	chem	ical a	and p	ohysic	al pr	inci	ple	s iı	n	tł	ne	synth	esis of
nanom	ateria	ls. It	also	cover	s diff	erent	meth	ods	fo	r sy	yn	th	lesi	is, pro	perties,
applica	tions	and c	harac	terizat	tion of	f nano	scale	mat	eria	als.					
Prereg	uisite	: Nil													
Course able to	Out	come	s: Afte	er the	comp	letion	of the	e co	urs	e th	ıe	st	ud	ent wil	1 be
CO1	Expl princ	ain tł ciples	ne cor of Ph	ncepts ysics	of na and C	anotec Chemis	hnolo stry ir	gy a n Na	anc anc	l ap tecl	opl nn	ly lol	th og	e basio y.	C
CO2	Explain synthesis, properties and applications of nanomaterials and nanocomposites.														
CO3	Expl	ain t	he ap	plicat	tion o	of nat	notech	nnol	ogy	v ir	1 +1-	bi	olc	gical	fields
004	DI U			, DIUS	1	s, 11ai				mu	τι.		.ap		
C04	nanomaterials.														
CO 5	Summarise the applications of nanotechnology in energy sector,									ctor,					
	Catal	y 515 a			\mathbf{r}										
<u> </u>	DO1	DOO	DO2						10		οт	20	-	DO11	DO10
CO	FOI	FU2	PU3	P04	F05	PUO	P07	PC	0	PU	9 I ()	1	PUII	FU12
CO1	3	3													2
CO2	3	3													2
CO3	3	3				2									2
CO4	3	3													2
CO 5	3	3		_		2	_								2
				A	ssess	ment	Patte	ern							
Plac		Catoo		Conti Tools	nuou	s Ass	essmo	ent]	Er	ıđ	Semes	ster
D100	5 UII S V	categ	Jory	Tes	st1	Tes	t 2	Oth	ler			E	xa	minati	ion
						- • •		too	ls						
Remen	ıber														
Under	stand														
Apply															
Analys	e														
Evalua	ite														
Create															

			Mark Di	stributio	on of CIA				
မိ							ks		
Course Structure [L-T-P-J]		Attendanc	Assignmen t	Test-1	Test-2			Total Ma	
3-0-0-0			5	15	10		10		40
			Total N	Iark dist	ribution				
Total Ma	rks	CIA	A (Marks)	E	SE (Marks	;)	E	SE Du	ration
100			40		60			3 hou	rs
End Semest	er Ex	amina	tion [ES	E]: Patte	ern				
PATTERN		PART	` A		PART B	8		ESE	Mark
PATTERN 1	Marl	Question stion o arks ks: (23 ks)	carries	2 ques from 6 of wh should Each 6 a may divisio Each Marks: Time: 3	each mod nich 1 l be an question of ns. question of 8 marks. (5x8 = 40) 3 hours	be giv lule, c questi nswere can ha f 2 s carries	en out on ed. ave ub	6	50
	То	tal Ma	rks: 20	Total M marks]	arks: [5x8	8 = 40			
			SV	LLABUS					

Introduction to Nanotechnology - History of nanotechnology, Pioneers in the field of nanotechnology. Classification of nano-materials: Zero, one, two and three dimensional nanostructured materials. Electromagnetic spectrum, particle size and its significance. Physics of nanomaterials - Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy- quantum confinement effect. Chemistry of nanomaterials - Ionic properties of nanomaterials, electronic phenomenon in nanostructures.

MODULE II : Synthesis methods

Synthesis methods - top down and bottom up approaches. Top down approach – size reduction techniques like milling and machining. Bottom up approach - Sol-gel methods, Chemical vapour deposition, Physical Vapour Deposition, Wet chemical synthesis, Laser ablation methods. Synthesis, properties and applications of nanomaterials like gold, silver and different types of nano oxides like Al2O3, TiO2, ZnO and SiO₂.

MODULE III: Nanocomposites and Bio nanotechnology

Nanocomposites - Matrix materials- Basics of Metal matrix, Ceramic Matrix and Polymer Matrix nanocomposites - Nano-reinforcements, nanofillers-nanoclays. Introduction to Bio nanotechnology (fundamental concepts only) - Nanomedicine,Drug delivery, Therapeutic applications. Applications of biosensors.

MODULE IV: Characterization techniques

Characterisation techniques - Scanning Electron Microscopy (SEM) -Energy Dispersive X-ray Spectroscopy (EDS) - Transmission Electron Microscopy (TEM) - Atomic Force Microscopy (AFM), UV-visible spectroscopy, Raman spectroscopy, Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS),

Thermogravimetric analysis (TGA).

MODULE V : Applications in energy, catalysis and electronics

Applications (fundamental concepts only) -: Nanoscale advances in energy and catalysis - Nanotechnology for sustainable energy, nanotechnology enabled renewable energy technologies. Application of nanomaterials in catalysis. Nanoelectronics - Introduction to Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS).

Text books

- 1. Joel I. Gersten, -The Physics and Chemistry of Materials, Wiley, 2001
- G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.
 S. Zhang, L. Li and Ashok Kumar, Materials Characterization Techniques, CRC Press (2008).
- 3. T. Pradeep, Nano: The Essentials, McGraw-Hill (India) Pvt Limited, 2008.
- 4. Nanocomposite science and technology, Pulikel M. Ajayan, Wiley-VCH 2005
- 5. C. M. Niemeyer, C. A. Mirkin, –Nanobiotechnology: Concepts, Applications

and Perspectives, Wiley - VCH, (2004)

- 6. J. Twidell and T. Weir, Renewable Energy Resources, E & F N Spon Ltd, London, (1986).
- Nanotechnology in Catalysis Volumes 1 and 2, Bing Zhou, Sophie Hermans, Gabor A. Somorjai, Springer Science & Business Media, 05-Sep-2007.
- 8. W.R.Fahrner, Nanotechnologyand Nanoelectronics-Materials,

Devices, Measurement Techniques, Springer-Verlag Berlin, Germany (2006).

Reference books

- 1. K.W. Kolasinski, –Surface Science: Foundations of Catalysis and Nanoscience, Wiley, 2002.
- 2. S. Edelstein and R. C. Cammarata, -Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Pub., 1998.
- 3. S.Yang and P.Shen: —Physics and Chemistry of Nanostructured Materials, Taylor & Francis, 2000.
- 4. Z L Wang (Ed.), Characterization of Nanophase materials, Willet-VCH (2000).
- 5. Guo, Jinghua (Ed.), X-rays in Nanoscience -Spectroscopy, Spectromicroscopy, and Scattering Techniques, John Wiley &Sons (2010).
- 6. Handbook of Nanoscience, Engineering and Technology, Kluwer publishers, 2002.
- 7. David S Goodsell, "Bionanotechnology, John Wiley & Sons, (2004).
- 8. Zheng Cui, Nanofabrication, Principles, Capabilities and Limits, Springer Science + business media, New York (2008).

	COURSE CONTENTS AND LECTURE SCHEDULE	;
		No. of
No.		Hours
	MODULE 1 (7 hours)	
1.1	Introduction to Nanotechnology - History of nanotechnology.	1
1.2	Pioneers in the field of nanotechnology.	1
1.3	Classification of nano-materials: Zero, one, two and three	1
	dimensional nano-structured materials.	
1.4	Electromagnetic spectrum, particle size and its significance.	1
1.5	Physics of nanomaterials - Size effect on thermal, electrical,	1
1.6	Optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy quantum confinement size effect.	1
1.7	Chemistry of nanomaterials - Ionic properties of nanomaterials, electronic phenomenon in nanostructures.	1
	MODULE II (7 hours)	

2.1	Top down approach – size reduction techniques like milling	1
	and machining.	
	Bottom up approach - Sol-gel methods, Chemical	1
2.2	vapour	
	deposition.	
	Physical Vapour Deposition, Wet chemical synthesis,	1
2.3	Laser	
	ablation methods.	
0.4	Physical Vapour Deposition, Wet chemical synthesis,	1
2.4	Laser	
	ablation methods.	

2.5	Synthesis, properties and applications of nanomaterials like	1
	gold, silver.	
2.6	Synthesis, properties and applications of different types of	1
	nano-oxides like Al2O3, TiO2, ZnO and SiO2.	
2.7	Synthesis, properties and applications of different types of	1
	nano-oxides like Al2O3, TiO2, ZnO and SiO2.	
	MODULE III (7hours)	
3.1	Matrix materials- Basics of Metal matrix.	1
3.2	Ceramic Matrix nanocomposites.	1
3.3	Polymer Matrix nanocomposites - Nano-reinforcements,	1
3.4	Nanofillers- nanoclays.	1
3.5	Introduction to bionanotechnology- Nanomedicine.	1
3.6	Drug delivery, Therapeutic applications.	1
3.7	Applications of biosensors.	1
	MODULE IV (7hours)	
4.1	Scanning Electron Microscopy (SEM) - Energy Dispersive X-	1
	Transmission Electron Microscopy (TEM) Atomic Force	1
4.2	Microscopy (AFM).	T
4.3	UV-visible spectroscopy, Raman spectroscopy.	1

4.4	Nuclear Magnetic Resonance Spectroscopy (NMR)	1
4.5	Fourier Transform Infrared Spectroscopy (FTIR).	1
4.6	X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS)	1
4.7	Thermogravimetric analysis (TGA).	1
	MODULE V (8 hours)	
5.1	Applications: Nanotechnology for sustainable energy.	1
5.2	Nanotechnology enabled renewable energy technologies.	1
5.3	Application of nanomaterials in catalysis.	1

5.4	Application of nanomaterials in catalysis.	1
5.5	Nanotechnology enabled renewable energy technologies.	1
5.6	Nanotechnology enabled renewable energy technologies.	1
5.7	Nanoelectronics - Introduction to Micro Electro Mechanical Systems (MEMS)	1
5.8	Nano Electro Mechanical Systems (NEMS).	1

	CO Assessment Sample Questions
1	Write a note on pioneers who contributed for the propagation of the ideas of nanotechnology.
2	Distinguish between top down and bottom up approach in nanomaterial synthesis.
3	Explain the application of nanotechnology in drug delivery.
4	Compare and contrast SEM and TEM.
5	Describe Nano Electro Mechanical Systems and their applications.

24CHI695 FERMENTATION TECHNOL					LOGY	L	Т	Р	J	S	С	Yea Introd	ar of luction		
								3	0	0	0	3	3	1	2024
Pream	ble:	This	cours	se aim	is to	bring	a ba	sic	kn	ow	led	lge	of	the v	various
process	ses ir	n ferm	entati	on for	the de	evelopi	ment o	f bio	olog	gica	ally	v re	lev	ant pro	oducts.
This in	clud	les m	icrobia	al gro	wth k	inetics	s, med	lias	fo	r f	ern	ner	nta	tion, p	roduct
develop	omer	nt and	reco	very, a	nd fer	rmenta	ative p	rodi	lct	ive	te	chr	nole	ogy.	
Prereq	uisit	e: Nil													
Course able to	• Ou	tcome	es: Af	ter the	e comp	oletion	of the	e co	our	se	the	e si	tud	lent wil	ll be
CO 1	Ex: fac	plain tors a	the j ffectir	proces ng fern	s of nentat	ferme tion pi	ntatio rocess.	n,	des	sig	n (of	fer	mente	r and
CO 2	Analyze microbial growth kinetics, comparison of batch and continuous culture processes and preservation of industrially important microorganism.											d strially			
CO 3	For	rmula	te me	dia fo	r indu	strial	ferme	nta	tior	ı.					
CO 4	CO 4 Explain the product development, product recovery and variou purification strategy for fermentative products.								arious						
	me lab	taboli elling	tes ar thr	nd seco ough	ondary go CO -	y me od ma PO M	etabolit nufac APPIN	tes turi G	ng	ano pr		tice	pa es.	acking	and
СО	PO	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	P	09	PC)1	PO11	PO12
	1											0			
	3	2													2
CO 2	3	2													2
CO 3	े उ	2 2													4
CO 5	3	2													2
	•	-		A	lssess	ment	Patte	rn						I	
				Conti	nuou	s Ass	essme	ent							
Bloo	m's	Cate	gory	Tools								Eı	nd	Seme	ster
				Tes	st1	Tes	st 2	Oth Too	ner ols			E	xa	minat	ion
Remem	ıber			\checkmark		✓		√		\checkmark					
Unders	stan	d		\checkmark		✓		√						✓	
Apply				~		✓		√						\checkmark	
Analys	e							√							
Evalua	te							√							
Create								✓							

Course Struct [L-T-P- 3-0-0-0 Total Marks	ure J])	Attendance	Assignment 12	Theory [L test t	Test-2	Total Marks	
Course Struct [L-T-P- 3-0-0-0 Total Marks 100	ure J])	91 Attendance	Assignment 12	Test-1	Test-2	Total Marks	
3-0-0-0 Total Marks 100)	5	15	10			
Total Marks 100				10	10	40	
Total Marks			'	'			
Total Marks		Total M	lark distr	ibution			
100	s CIA	(Marks)	ESE	E (Marks)		ESE Duration	
		40		60		3 hours	
	En	d Semes	ter Exam	ination [I	ESE]: Pat	tern	
PATTER N 10 ea qu ca PATTERN 1 Ma =2	PAR1 O Question ach aestion arries 2 m arks: (2x1 20 marks) otal Marks	2 A ns, arks 0	APART Bs,2 questions will be given from each module, out o which 1 question should be answered. Each question can have a maximum of 2 sub divisions.Each question carries 8 marks.Marks: (5x8 = 40 marks)				
		S	marks]	IKS. [0A0	10		

MODULE I: Introduction to fermentation

Introduction to fermentation-Design of fermenter-body constructionaeration system agitation system-baffles- sensors. Type of fermenters-Waldhof, Tower, Deep jet, Cyclone column, packed tower and airlift fermenter Different types of fermentation process-batch, continuous, fed batch. Factors affecting fermentation process- physical, chemical and biological factors.

MODULE II: Microbial Growth Kinetics

Microbial Growth Kinetics: Batch culture-continuous culture-fed batch system- biomass productivity-metabolite productivitycontinuous brewing-comparison of batch and continuous culture. Isolation and preservation of industrially important microorganisms. Preservation of industrially important microorganisms.MODULE III: Media for industrial fermentation Media for industrial fermentation- introduction-typical media-medium formulationwater energy sources-carbon sources-factors affecting the selection of

water energy sources-carbon sources-factors affecting the selection of carbon source carbohydrates, oils and fats, nitrogen source, minerals, growth factors, chelators, buffers, antifoam agents, pH. Medium optimization-animal cell media - serum free media, protein free media. Non-nutritional media supplement.

MODULE IV: Product development and product recovery

Product development and product recovery-cell. Introduction to purification of fermentative products-removal of microbial cells and other solid matters. Cell disruption physical-mechanical-chemical-enzymatic methods. Product recovery- chromatography adsorption-ion-exchange-HPLC. Filtration- types of filters-batch- continuous filters centrifugation. Liquid/liquid extraction and dialysis.

MODULE V: Introduction to fermentative production technology

Introduction to fermentative production technology: Industrial production of Primary metabolites and secondary metabolites. Introduction to enzyme production- Intracellular and Extracellular Enzymes- Production of Proteases. Fermentative production of ethanol, acetone- butanol, Organic acids- citric acid. Amino acids- lysine and phenylalanine, Vitamins riboflavin and ascorbic acid. Antibiotics- penicillin SCP production. Packing and labelling. Good Manufacturing Practices, Biosafety- laws and concerns at different levels- individual, institution and society.

Forms of IPR and process of patenting.

Text books

- 1. Peter F. Stanbury Allan Whitaker Stephen Hall, Principles of Fermentation Technology,2nd Edition, Butterworth-Heinemann 1995.
- 2. Michael L Shuler, Fikret Kargi, Bioprocess Engineering Basic Concepts, Prentice Hall, 1992.
- 3. WulfCruger and AnnelieseCrueger, Biotechnology: A Textbook of Industrial

Microbiology, 2nd Edition, Panima Publishing Corporation, 2004.

Reference books Michael C Flickinge (Ed.), Upstream Industrial Biotechnology, Volumes 1 & 2, Wiley 2013. Brian McNeil, Linda Harvey (Eds.), Practical Fermentation Technology, Wiley, 2008. J E Bailey, D F Ollis, Biochemical Engineering Fundamentals, 2/e, McGraw-Hill Chemical Engineering Series, 1986. BioprocessTechnology, P.T. Kalichelvan and Arul Pandi, 2009, MJP Publishers, Chennai.

5. Bioprocess Technology-Kinetics and reactors, Antan Moser and Philip Manor, 1998, Springer.

COURSE CONTENTS AND LECTURE SCHEDULE

ЪT		No. of			
No.		Hours			
	MODULE 1 (8 hours)				
1.1	Design of fermenter.	1			

1.2	Body construction-aeration system.	1
1.3	Baffles- sensors.	1
1.4	Type of fermenters- Waldhof, Tower, Deep jet, Cyclone column,	1
1.5	Packed tower and airlift fermenter.	1
1.6	Different types of fermentation process-batch,	1
1.7	Continuous, fed batch.	1
1.8	Factors affecting fermentation process- physical, chemical and biological factors.	1
	MODULE II (7 hours)	
2.1	Batch culture-continuous culture.	1
2.2	Fed batch system.	1
2.3	Biomass productivity, metabolite productivity.	1
2.4	Continuous brewing.	1

2.5	Comparison of batch and continuous culture.	1
2.6	Isolation of industrially important microorganisms.	1
2.7	Preservation of industrially important microorganisms.	1
	MODULE III (6 hours)	
3.1	Introduction -typical media-medium formulation-water.	1
3.2	Energy sources-carbon sources-factors affecting the selection of carbon source.	1
3.3	Carbohydrates, oils and fats, nitrogen source, minerals, growth factors, chelators, buffers, antifoam agents, pH.	1
3.4	Medium optimization-animal cell media.	1
3.5	Serum free media-protein free media.	1
3.6	Non-nutritional media supplement.	1
	MODULE IV (9 hours)	

4.1	Introduction to purification of fermentative products.	1			
4.2	Removal of microbial cells and other solid matters.				
4.3	Cell disruption-physical-mechanical methods.	1			
4.4	Cell disruption-chemical-enzymatic methods.	1			
4.5	Product recovery.	1			
4.6	Chromatography.	1			
4.7	Adsorption-ion-exchange HPLC.	1			
4.8	Filtration- types of filters-batch-continuous filters centrifugation.	1			
4.9	Liquid/liquid extraction and dialysis.	1			
MODULE V (10 hours)					

5.1	Industrial production of Primary metabolites and secondary	1
	metabolites.	
5.2	Introduction to enzyme production – Intracellular and	1
	Extracellular Enzymes- Production of Proteases.	
5.3	Fermentative production of ethanol.	1
5.4	Acetone-Butanol.	1
5.5	Organic acids- citric acid.	1
5.6	Amino acids- lysine and phenylalanine, Vitamins- riboflavin and ascorbic acid	1
5.7	Antibiotics-penicillin SCP production.	1
5.8	Packing and labelling. Good Manufacturing Practices.	1
5.9	Biosafety laws and concerns at different levels- individual, institution and society.	1
5.10	Forms of IPR and process of patenting.	1

CO Assessment Sample Questions

Illustrate the working of an airlift fermenter.

1

2	Draw a microbial growth curve and explain the different phases.
3	Brief about the factors to be considered during the selection of carbon and
	nitrogen sources in the media.
4	Discuss about the methods for the removal of cells and solid matters.
5	With a neat sketch outline the production of any one intracellular enzyme.

SIXTH SEMESTER HONOUR

24000			Т	Р	J	s	С	Year of Introduction
240009	ADVANCED FLUID MECHANICS	4	0	0	0	4	4	2024
Preamble: 7 in fluid med fundamenta bodies, diff layer theory including th	The main objective of the course is to chanics to advance their knowledge al flow characteristics, fluid flow erent types of flow boundary cond 7. This course enhances the under the equations of motion in differentia	in th itic ers al f	nd th neo ons tai	erta is f ren ar ndi m.	ake ielo ns, nd ng	as 1.7 flo cor of	sust This ow ncep flui	ained learning course covers past different t of boundary d mechanics,
Prerequisite: Nil								

Course	Outcome	es: A	fter the o	compl	etion of the co	urse the st	udent will l	be able to
CO1	Explain	the	different	flow	characteristic	s and flow	functions.	

CO3	Analyse the	behavior of flow	past different bodies.
------------	-------------	------------------	------------------------

COF	Apply the concepts of momentum boundary layer in different
05	engineering applications.

CO - PO MAPPING												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3										
CO 2	3	3										
CO 3	3	3	2									
CO 4	3	3	2									
CO 5	3	3	2									

	Continuo	ous Assess Tools	End Semester		
Bloom's Category	Test1	Test 2	Other tools	Examination	
Remember	~	✓	v	✓	
Understand	 	✓	✓	v	
Apply	~	✓	~	✓	
Analyse			✓	v	
Evaluate			✓		
Create			v		

Course		Th			
Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks
4-0-0-0	5	5	10	10	40

Total Mark distribution						
Total Ma	arks	CIA (Marks)	ESE (Marks)	E	ESE Duration	
100		40	60			
		End Semester	Examination [ESE]:	Pattern		
PATTERN		PART A	<u>PART B</u>		ESE Marks	
PATTERN 1	10 Qu quest mark Marks marks	Aestions, each ion carries 2 s s: (2x10 =20 s) Marks: 20	2 questions will from each module, out of question shou answered. Each can have a maxim sub divisions. Each question of 8 marks. Marks: (5x8 = 40 m Time: 3 hours Total Marks: [5x8	be given of which 1 ild be question num of 2 carries narks) = 40	60	
			marks]			

SYLLABUS

MODULE I: Fluid flow functions (9 hours)

Basic Concepts and Fundamentals: Fluid statics, Cartesian Tensors, Fluid Kinematics, and Description of fluid motion –Types of motion of fluid elements, Vorticity and circulation – Concept of rotational and irrotational flows. Equation of motion of forced and free vortex flow. Stream function and Potential function. Stream function and its relation with velocity field. Relation between stream function and stream lines - Relation between stream function and velocity potential for a 2-D irrotational and incompressible flow.

MODULE II: Flow tracking approaches and equations (9 hours)

Relation between stream lines and lines of constant potential. Sketching of stream lines. Lagrangian and Eulerian approaches, acceleration, temporal acceleration, convective acceleration. Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem. Problems on the application of momentum equation

MODULE III: Characteristics of flow past immersed bodies (10 hours)

Potential flow: Uniform flow, source flow, sink flow, free vortex flow and super imposed flow-source and sink pair, doublet, plane source in a uniform flow (flow past a half body), source and sink pair in a uniform flow (flow past a Rankine oval body), doublet in a uniform flow (flow past a circular cylinder). Pressure distribution on the surface of the cylinder. Flow past a cylinder with circulation, Kutta- Juokowsky's law. Complex flow potential, complex flow potentials for source, sink, vortex and doublet.

Potential flow between two parallel plates, potential flow in a sector.

MODULE IV: Different types of flow governing equations (10 hours)

Incompressible viscous flow. Concepts of laminar and turbulent flows. Stokes viscosity law. Navier Stoke's equation and significance (Derivation not necessary). Simplification of Navier stock equation for steady incompressible flows with negligible body forces. Parallel flow through straight channel and couette flow. Hagen - Poiseuille flow. Derivation of Hagen Poissuille equations for velocity and discharge through a pipe, derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients, flow in a rotating annulus, Viscometer based on rotating annulus.

MODULE V: Concepts of boundary layer (10 hours)

Boundary layer theory, Boundary layer thickness, Displacement thickness, momentum thickness, Energy thickness and their calculation. Laminar Boundary Layers, Boundary layer equations; Boundary layer on a flat plate, Prandtl boundary layer equations, Blasius solution for flow over a flat plate, Von- Karman momentum integral equations, Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow.

Text books

- 1. Bansal R. K., A Text Book of Fluid Mechanics and Machines, Laxmi Publications, 2010.
- 2. 2. Douglas J. F., Fluid Mechanics, Pearson Education, 2005.
- 3. 3. Kumar D. S., Fluid Mechanics and Fluid Power Engineering, S. K. Kataria & Sons, 1987.
- 4. 4. Muralidhar K., G. Biswas, Advanced Engineering Fluid Mechanics, Alpha Science
- 5. International limited, 2005.
- 6. 5. Rama D. D., Fluid Mechanics and Machines, New Age International,

2009.

Reference books

- 1. Schlichting H., K. Gersten , Boundary Layer Theory, 8/e, Springer 2000.
- 2. Shames I. H., Mechanics of Fluids, 4/e, McGraw-Hill, 2002.
- 3. Streeter V. L. and E. B. Wylie, Fluid Mechanics, McGraw-Hill, 1979.

No.		No. of Hours
	MODULE 1	

1.1	Fluid statics, Cartesian Tensors, Fluid Kinematics, and Description of fluid motion	1	
1.2	Types of motion of fluid elements, Vorticity and circulation	1	
1.3	Concept of rotational and irrotational flows. Equation of motion of forced and free vortex flow.	1	
1.4	Stream function and Potential function. Stream function and	1	
	its relation with velocity field.		
1.5	Stream function and Potential function. Stream function and	1	
	its relation with velocity field.		
1.6	Relation between stream function and stream lines	1	
1.7	Relation between stream function and stream lines	1	
1.8	Relation between stream function and velocity potential for a	1	
	2-D irrotational and incompressible flow.		
1.0	Relation between stream function and velocity potential	1	
1.9	for a		
	2-D irrotational and incompressible flow.		
MODULE II			

2.1	Relation between stream lines and lines of constant potential.	1
2.2	Sketching of stream lines.	1
2.3	Lagrangian and Eulerian approaches	1
2.4	acceleration, temporal acceleration, convective acceleration.	1
2.5	acceleration, temporal acceleration, convective acceleration.	1
2.6	Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem.	1
2.7	Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem.	1
2.8	Problems on the application of momentum equation.	1
2.9	Problems on the application of momentum equation.	1
	MODULE III	
3.1	Uniform flow, source flow, sink flow, free vortex flow and super imposed flow	1
3.2	flow-source and sink pair, doublet, plane source in a uniform flow (flow past a half body),	1
3.3	source and sink pair in a uniform flow (flow past a Rankine oval body), doublet in a uniform flow (flow past a circular cylinder).	1

3.4	source and sink pair in a uniform flow (flow past a Rankine oval body), doublet in a uniform flow (flow past a circular cylinder).	1	
3.5	Pressure distribution on the surface of the cylinder. Flow past a cylinder with circulation	1	
3.6	Pressure distribution on the surface of the cylinder. Flow past a cylinder with circulation.	1	
3.7	Kutta- Juokowsky's law		
3.8	Complex flow potential, complex flow potentials for source, sink, vortex and doublet.	1	
3.9	Potential flow between two parallel plates, potential flow in a sector.	1	
3.10	Potential flow between two parallel plates, potential flow in a sector.	1	
MODULE IV			
4.1	Incompressible viscous flow.	1	

4.2	Concepts of laminar and turbulent flows.	1
4.3	Stokes viscosity law. Navier Stoke's equation and significance	1
4.4	Simplification of Navier stock equation for steady incompressible flows with negligible body forces.	1
4.5	Parallel flow through straight channel and couette flow. Hagen - Poiseuille flow.	1
4.6	Derivation of Hagen Poissuille equations for velocity and discharge through a pipe,	1
4.7	Derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients	1
4.8	Derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients	1
4.9	Flow in a rotating annulus, Viscometer based on rotating annulus.	1
4.10	Flow in a rotating annulus, Viscometer based on rotating annulus.	1
	MODULE V	
5.1	Boundary layer theory and Boundary layer thickness	1
5.2	Displacement thickness and momentum thickness	1
5.3	Energy thickness and its calculatin	1
5.4	Laminar Boundary Layers, Boundary layer equations; Boundary layer on a flat plate	1

5.5	Laminar Boundary Layers, Boundary layer equations; Boundary layer on a flat plate	1
5.6	Prandtl boundary layer equations, Blasius solution for flow over a flat plate,	1
5.7	Prandtl boundary layer equations, Blasius solution for flow over a flat plate,	1
5.8	Von- Karman momentum integral equations	1
5.9	Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow,	1
5.10	Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow	1

CO Assessment Questions

ſ

1	The velocity potential function (Φ) is given by an expression $\Phi = -\frac{x y^3}{3} - x^2 + \frac{x}{3} + \frac{y}{2}$ (i) Find the velocity components in <i>x</i> and <i>y</i> direction. (ii) Show that Φ represents a possible case of flow.
2	Derive the momentum equation using Reynolds transport theorem.
3	 A uniform flow of 12 m/s is flowing over a doublet (circular cylinder) of strength 18 m²/s. The doublet is in the line of the uniform flow. Determine (i) Shape of the Rankine oval (ii) Radius of the Rankine cycle (iii) Value of stream line function at Rankine cycle (iv) Resultant velocity at a point on the Rankine circle at an angle of 30° from x-axis
4	The blood flow through a large artery of radius 2.5 mm is found to be 20 cm long. The pressure across the artery ends is 380 Pa, calculate the blood's average speed.
5	Find the displacement thickness, the momentum thickness and energy thickness for the velocity distribution in the boundary layer given by $\frac{u}{U} = 2 \frac{v}{\delta} - \left(\frac{v}{\delta}\right)^2$

24	CH	H6	51	0

ENERGY CONSERVATION AND WASTE HEAT RECOVERY

L	Т	Р	J	S	С	Year of Introduction
4	0	0	0	4	4	2024

Preamble: The proposed course introduces various methods of waste heat recovery that have been employed by the industry to harness the energy stored in waste heat and use it for generation of additional electric power. The course gives a detailed idea about the involvement of thermodynamic principles in waste heat recovery systems, heat exchanger networks and direct energy production methods and its storage. This course helps to build the students fundamental knowledge in different waste heat recovery processes and energy storage mechanisms.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Describe the	thermodynamics	aspects of v	waste heat recovery
-------------	--------------	----------------	--------------	---------------------

CO 2 Describe the thermodynamic cycles involved in the waste heat recovery

	process.
CO 3	Describe the heat exchanger networks for waste heat recovery.

CO 4 Explain the direct conversion technologies for energy production.

CO 5 Describe the commonly used energy storage techniques.

CO - PO MAPPING												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	2									
CO 2	3	3	2									
CO 3	3	3	2									
CO 4	3	3	2									
CO 5	3	3	2									

Assessment Pattern

	continuous	Assessment	d Semester Examination	
Bloom's Category	Test1 Test 2 Other tools tools			
Remember	v	~	~	v
Understand	v	v	~	v
Apply	v	~	~	~
Analyse			~	
Evaluate			~	
Create			~	

Mark Distribution of CIA	

Course		T			
Structure [L-T- P-J]	Attendance	Assignment Test-1		Test-2	Total Marks
4-0-0-0	5	15	10	10	40

	Total Mark distribution							
Total Ma	Total Marks CIA (Marks)		ESE (Marks)	ESE Duration				
100 40		40	60	3 hours				
		End Semester	Examination [ESE]: Pattern	<u>l</u>				
PATTERN		PART A	PART B	ESE Marks				
PATTERN 1	10 Qu quest marks Marks marks	Marks: 20	 2 questions will be give from each module, out of which question should answered. Each question can have a maximum of sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours Total Marks: [5x8 = 40 marks] 	ven n 1 be ion f 2 60				

SYLLABUS

MODULE I: Thermodynamics aspects of waste heat recovery (9 hrs)

Introduction to Waste Heat, Importance of Waste Heat Recovery,

Thermodynamic principles of waste heat recovery– Introduction to First and Second Laws, reversible

cycles, Entropy, Entropy Generation, Exergy, First and Second Law efficiency **MODULE II:** Thermodynamic cycles (9 hrs)

Power Plant Cycles -Rankine Cycle, modification of Rankine cycle, examples. Gas Turbine Cycle, Combined Cycle, Combined Gas Turbine-Steam Turbine Power Plant, Heat Recovery Steam Generators, Thermodynamic cycles for low temperature

application, Cogenerations.

MODULE III: Waste heat recovery using heat exchanger (10 hrs)

Introduction to Heat Exchangers, Analysis – LMTD and ϵ -NTU method Analysis of Heat Exchanger, Special Heat Exchangers for Waste Heat Recovery (run around coil type), Synthesis of Heat Exchanger network, corrigendum design of heat exchanger

network, Heat pipes & Vapor Chambers.

MODULE IV: Direct conversion technologies (10 hrs)

Introduction to Thermo electric generation, Seebeck and Peltier effect, Thermoelectric

Generators-Functioning and applications, performance and optimisation, Direct Thermo-ionic conversion, Thermo photo voltaic generation, Magneto hydro Dynamics, Heat Pump; Heat Recovery from Incinerators

MODULE V: Energy storage (10 hrs)

Energy Storage – Introduction to Energy Storage systems, Energy Storage systems

techniques – Pumped hydro, Compressed Air, Flywheel, Superconducting Magnetic energy storages, Thermal storage (Sensible & Latent)- pressurised water storage and solar power, Electro-chemical Energy Storage - Battery and Fuel cells-PFMC fuel cell.

Text books

- 1. J. H. Harlock, Combined Heat and Power, Pergaman Press, 1987
- 2. F. Kreith and R. E. West, Energy Efficiency, CRC handbook, CRC Press, 1999
- 3. Kays and London, Compact Heat Exchangers, 3rd edition, McGraw-Hill, New York.

Reference books

1. Prof. P.K. Das and A. Bhattacharya, Energy Conservation and Waste Heat Recovery, NPTEL course, IIT Kharagpur

No.		No. of Hours					
	MODULE 1						
1 1	Introduction to Waste Heat, Importance of Waste Heat	1					
1.1	Recovery	I					
12	Introduction to Waste Heat, Importance of Waste Heat	1					
1,2	Recovery	1					
13	Thermodynamic principles of waste heat recovery-	1					
1.0	Introduction to First and Second Laws flows.	1					
14	Thermodynamic principles of waste heat recovery-	1					
1.1	Introduction to First and Second Laws flows.	1					
1.5	Reversible cycles	1					
1.6	Entropy, Entropy Generation	1					
1.7	Entropy, Entropy Generation	1					
1.8	Exergy, First and Second Law efficiency	1					

1.9	1.9 Exergy, First and Second Law efficiency						
2.1	Rankine Cycle, modification of Rankine cycle, examples.	1					
2.2	Rankine Cycle, modification of Rankine cycle, examples	1					
2.3	Gas Turbine Cycle	1					

2.4	Combined Cycle	1					
2.5	Combined Gas Turbine-Steam Turbine Power Plant	1					
2.6	Heat Recovery Steam Generators	1					
2.7	Thermodynamic cycles for low temperature application	1					
2.8	Thermodynamic cycles for low temperature application	1					
2.9	Cogenerations.	1					
	MODULE III						
3.1	Introduction to Heat Exchangers	1					
3.2	LMTD and ϵ -NTU method Analysis of Heat Exchanger	1					
3.3	LMTD and ϵ -NTU method Analysis of Heat Exchanger	1					
3.4	Special Heat Exchangers for Waste Heat Recovery	1					
3.5	Special Heat Exchangers for Waste Heat Recovery	1					
3.6	Synthesis of Heat Exchanger network	1					
3.7	Synthesis of Heat Exchanger network,	1					
3.8	Corrigendum design of heat exchanger network	1					
3.9	Corrigendum design of heat exchanger network	1					
3.10	Heat pipes & Vapor Chambers.	1					
MODULE IV							
4.1	Introduction to Thermo electric generation	1					
4.2	Seebeck and Peltier effect	1					
4.3	Thermoelectric Generators-Functioning and applications	1					

4.4	Thermoelectric Generators-Functioning and applications	1
4.5	Performance and optimisation	1
4.6	Performance and optimisation	1
4.7	Thermo photovoltaic generation,	1

4.8	Magneto hydro Dynamics	1
4.9	Heat Pump	1
4.10	Heat Recovery from Incinerators	1
	MODULE V	
5.1	Introduction to Energy Storage systems	1
5.2	Pumped hydro, Compressed Air	1
5.3	Pumped hydro, Compressed Air	1
5.4	Flywheel, Superconducting Magnetic energy storages	1
5.5	Flywheel, Superconducting Magnetic energy storages	1
5.6	Pressurized water storage and solar power	1
5.7	Pressurized water storage and solar power	1
5.8	Introduction to Electro-chemical Energy Storage	1
5.9	Battery and Fuel cells-PFMC fuel cell.	1
5.10	Battery and Fuel cells-PFMC fuel cell.	1

CO assessment sample questions									
1	Describe the importance of heat pump and heat engine in the waste heat								
	recovery process.								
2	With a flow chart explain the working of combined gas and steam								
	power								
	plant and list out the advantages.								

3	Describe significance and working of run around coil type heat exchanger.
4	Describe the construction and working of magneto hydro dynamics power generation method.
5	Explain the electrochemical energy storage techniques.

24CHH611	MODERN CONTROL THEORY	L	Т	Р	J	s	С	Year of Introduction
		4	0	0	0	4	4	2024

Preamble: This course aims to cultivate proficiency in the depiction of systems and the formulation of their transfer function models. It endeavors to impart comprehensive understanding of the time response characteristics of systems and the analysis of steady-state errors. Additionally, the course seeks to instill fundamental knowledge in deriving open-loop and closed-loop frequency responses of systems. A key objective is to foster comprehension of control system stability concepts and the various methods employed for stability analysis.

Prerequisite: Nil												
Course	Course Outcomes: After the completion of the course the student will be able to									to		
CO1	Solve numerical problems on state space theorem											
CO2	Devel	lop a t	ransfe	er func	ction fi	rom a	state 1	nodel.				
CO3	Devel	lop sol	utions	s of sta	ate equ	ations						
CO4	Defin	ie stab	oility a	nd fin	d stab	oility a	nalysi	s usin	g the	Liapun	nov theo	orem.
CO5	Find stability of nonlinear systems using the Krasovski method and variable gradient method.											
					CO -	PO MA	PPINC	à				
CO	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12

CU	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								
CO5	3	3	3	3								

Assessment Pattern								
Bloom's Category	Continuou Tools	is Assessme	End Semester					
	Test1 Test 2 Other tools		Examination					
Remember	~	~	v	v				
Understand	v	v	v	 ✓ 				
Apply	~	~	v	v				
Analyse			v					
Evaluate			v					
Create			v					

			Mark D	Distribut	ion of CIA			
Course	Theory [L- T]							
Structure [L-T-P-J]	Attendance		Assignment		Test-1	Test-2	Total Marks	
4-0-0-0	[5	1	5	10	10	40	
			Total I	Mark dis	stribution			
Total Ma	rks	CIA	(Marks)	E	SE (Marks)	ES	E Duration	
100			40		60		3 Hrs	
End Semeste	er Exam	ination	[ESE]: Pa	attern				
PATTERN	PART	• A	-	PART	` В		ESE Marks	
PATTERN 1	quest Marks marks	ion car 2 n s: (2x1)	n each ries narks 0 =20	each n questio Each maxim Each marks Marks: Time: 3	nodule, out of on should be question can um of 2 sub question can question can (5x8 = 40 m) 3 hours	60		
	Total	Marks:	20	Total mark	Marks: [5x8 s]			
	·		S	YLLABU	S			
MODULE I: S	State Var	iable An	alysis and	d Design	(12 Hours)			
Introduction of linear sys using physic MODULE II :	i, conce tems, li cal varia Derivatio	pt of st ineariza ables, pl on of tra	ate, stat tion of nase vari nsfer fun	te varial state e ables & ction fro	bles and stat quations. Sta canonical van m state model	te model, st ate space t riables. (8 Hours)	tate modeling representation	
Derivation o	of transf	fer fund	ction from	m state	model, diag	onalizatior	ı, Eigen	
values, Eigen vectors, generalized Eigenvectors. Evaluation of Matrix polynomial, inverse of a matrix, state transition matrix. Quadratic forms and sign definiteness of quadratic forms State space analysis of control systems.								
Solution of computation	state using	equati Laplac	on, sta e trans	te tran formati	nsition math on, power	rix and i series me	ts properties, thod, Cayley-	
Hamilton method, concept of controllability & observability, methods of determining controllability & observability.								
MODULE IV:	Non-line	ar syste	ms (9 Hou	urs)				
Introduction, saturation, fr	behavio iction, b	or of a 1 backlash	non-line 1, dead z	ar syste one, rel	em, common ay, multivaria	physical n able non-lir	onlinearity learity.	
· · · · · · · · · · · · · · · · · · ·	,				·			

Phase plane method, singular points, stability of nonlinear system, limit cycles, construction of phase trajectories

MODULE V: Lyapunov stability criteria (9 Hours)

Lyapunov stability criteria, Lyapunov functions, direct method of Lyapunov & the linear system, Hurwitz criterion & Lyapunov's direct method, construction of Lyapunov functions for nonlinear system by Krasvskii's method.

Textbooks

- 1. Katsuhiko Ogata, Modern control engineering, Prentice- Hall of India, Fifth edition 2015.
- 2. Chen.C.F and I.J Haas, Elements of control system analysis, Prentice Hall First edition 1968

Reference books

- 1. I.J. Nagarath & M. Gopal, "Control System Engineering", 5th edition, New Age International Ltd.
- 2. Katsuhiko Ogata, State space analysis of control systems, Prentice Hall, First edition 1967
- 3. Kuo.B.C, Analysis and synthesis of sampled data control systems, Prentice Hall, First edition 1963
- 4. A. Nagoor Kani, Advanced Control Theory, RBA Publications. Second edition 1999

COURSE CONTENTS AND LECTURE SCHEDULE

No of

	Hours								
MODULE 1									
Introduction, the concept of state, state variables, and state model	1								
Introduction, the concept of state, state variables, and state model	1								
state modeling of linear systems	1								
state modeling of linear systems	1								
linearization of state equations	1								
linearization of state equations	1								
State space representation using physical variables	1								
State space representation using physical variables	1								
State space representation using phase variables	1								
State space representation using phase variables	1								
State space representation using canonical variables.	1								
State space representation using canonical variables.	1								
MODULE II									
Derivation of transfer function from state model	1								
Derivation of transfer function from state model	1								
	MODULE 1Introduction, the concept of state, state variables, and state modelIntroduction, the concept of state, state variables, and state modelstate modeling of linear systemsstate modeling of linear systemsstate modeling of linear systemsstate modeling of state equationslinearization of state equationslinearization of state equationsState space representation using physical variablesState space representation using physical variablesState space representation using phase variablesState space representation using phase variablesState space representation using canonical variables.State space representation using canonical variables.Derivation of transfer function from state modelDerivation of transfer function from state model								

2.3	diagonalization	1							
2.4	Eigenvalues, Eigen vectors	1							
2.5	generalized Eigenvectors.	1							
2.6	Evaluation of Matrix polynomial, inverse of a matrix, state transition matrix.	1							
2.7	Quadratic forms and sign definiteness of quadratic forms State	1							
	space analysis of control systems.	1							
2.8	2.8 State								
	space analysis of control systems.								
	MODULE III	-							
3.1	Solution of state equation	1							
3.2	state transition matrix and its properties	1							
3.3	computation using Laplace transformation	1							
3.4	computation using the power series method	1							
3.5	computation using the Cayley-Hamilton method	1							
3.6	computation using the Cayley-Hamilton method	1							
3.7	concept of controllability & observability	1							
3.8	concept of controllability & observability	1							
3.9	methods of determining controllability & observability	1							
3.10	methods of determining controllability & observability	1							
	MODULE IV	·							
4.1	Introduction, the behavior of a non-linear system	1							
4.2	common physical nonlinearity saturation, friction, backlash, dead	1							
	zone, relay, multivariable non-linearity.								
4.3	common physical nonlinearity saturation, friction, backlash, dead	I							
4.4	common physical nonlinearity saturation, friction, backlash, dead	1							
4.5	zone, relay, multivariable non-linearity. Phase plane method, singular points, stability of nonlinear system, limit cycles, construction of phase trajectories	1							
4.6	Phase plane method, singular points, stability of nonlinear system, limit cycles, construction of phase trajectories	1							
4.7	Phase plane method, singular points, stability of nonlinear system, limit cycles, construction of phase trajectories	1							

4.8	Phase plane method, singular points, stability of nonlinear system,	1
	limit cycles, construction of phase trajectories	
4.9	Phase plane method, singular points, stability of nonlinear system,	1
	limit cycles, construction of phase trajectories	
	MODULE V	
5.1	Lyapunov stability criteria	1

5.2	Lyapunov functions							
5.3	The direct method of Lyapunov & the linear system							
5.4	Hurwitz criterion & Lyapunov's direct method,	1						
5.5	Hurwitz criterion & Lyapunov's direct method,	1						
5.6	Hurwitz criterion & Lyapunov's direct method,							
5.7	Hurwitz criterion & Lyapunov's direct method,							
5.8	construction of Lyapunov functions for nonlinear systems by Krasvskii's method.	1						
5.9	construction of Lyapunov functions for nonlinear systems by Krasvskii's method.	1						

CO Assessment Sample Questions

Explain the basic elements of a state diagram. Draw the block diagram of the system

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{3} \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u; y = x_{3}$$

described by the state model, $\lfloor \ \ \rfloor$

1

Explain Quadratic forms and sign definiteness of Quadratic forms. 2

	A discrete-time system has a state equation given by:
3	x(k + 1) = [-62 - 61]x(k)
	Use the Cayley Hamilton approach to find out the state transition matrix.
	Use the variable gradient method to investigate the stability of the
	equilibrium state
4	of a nonlinear system described by the equations
	$x = -x + 2 \frac{2}{x + x}$

	Consider the nonlinear system
5	$\dot{x_1} = -x_1 - x_2^2$ $\dot{x_2} = -x_2$ Find a region of asymptotic stability using Krasovski method

SIXTH SEMESTER MINOR

24СНМ609 СН		CHEN	EMICAL REACTION ENGINEERING					т	Р	J	s	С	Yea Introc	r of luctio	
								E	0	0	0	4	4	1 20	n 24
Preamble: The course is designed to provide stude										s v	witł	ı a	ιc	omprel	nensive
under	understanding of the fundamental principles and practical aspects governing														
chemi	cal rea	ctions	In e	engine vledge	ering	proc	esses	S. TI	118	co to	urs	se	a1:	ms to	equip b and
optimize chemical processes.															
Prerequisite: Nil															
Cours	e Outco	mes:	After t	the co	mpleti	ion of	the c	ourse	e th	e s	tud	en	t w	vill be a	ble to
CO1	Expla	in the	princ	iples	of che	mical	kinet	tics.							
CO2	Distin	iguish	betwe	een ele	ement	ary ar	nd no	-elen	nen	tar	y re	eac	tio	ns.	
CO3	Deter	mine c	hemi	cal kii	netic p	param	eters	usin	g b	atc	h r	ea	cto	r data.	
CO4	Devel	op des:	ign eq	uation	ns of i	deal re	eactor	rs.							
CO5	Descr	ibe no	n idea	al beha	avior o	of chei	mical	reac	tors	3.					
					CO - I	PO MA	PPINC	ŕ							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 P O8	B P	09	P	01	0	PO11	PO12
CO1	3	2													1
CO2	2	2													1
CO3	3	2													1
CO4	3	2													1
CO5	3	2													1
				A	ssessn	nent I	Patte	rn	_						
D1				Conti	nuous	s Asses	ssme	nt To	ols	_		E	nd	Semes	ter
BIO	om's Ca	tegory	7	Test1		Test 2		too	Other tools		Examination		on		
Remer	nber			~		v		V	1		 ✓ 				
Understand				~		v		V	v		v				
Apply				v		v		V	v		~				
Analyse								V	✓						
Evaluate								V	•						
Create								V	•						
				Marl	z Diet	rihuti	on of								

Mark Distribution of CIA									
Course	Attendance	The							
Structure [L-T-P-J]		Assignment	Test-1	Test-2	Total Marks				

4-0-0-0		5		15 10		10	40			
Total Mark distribution										
Total Marks CIA (Marks) ESE (Marks) ESE Duration										
100		40			Hours					
End Semester Examination [ESE]: Pattern										
PATTERN	ATTERN PART A PAI				PART B		ESE Marks			
PATTERN 1	10 ea ca M =2	0 Questior ach questi arries 2 ma arks: (2x1 20 marks)	ns, on arks 0	2 ques from each mo 1 que answere can hav subdivis Each c 8 Marks: (Time: 3	n 60					
	Т	otal Marks	: 20	Total Ma marks]						
				OVI I ADII	2					
MODULE I: Int	rodu	ction		SILLADU	3					
Scope of Chemical Reaction Engineering, Classification of reactions, Rate equation and rate of reaction, Factors affecting rate of reaction, Temperature-dependency of rate constant from Arrhenius theory, Molecularity and order of reactions. MODULE II: Non-Elementary Reactions Difference between elementary and non- elementary reactions. Kinetic										
models and m	echa	anisms for	non-e	elementary	reactions	and types o	of reactors.			

MODULE III: Homogeneous Reactions

Homogeneous Reactions: Interpretation of batch reactor data. Constant Volume batch reactor. Analysis: Differential method, Integral method, half-life method (Derivations in this module evaluated in the examination may be limited to first order reactions)

MODULE IV: Ideal Reactors
Design of Ideal Reactors: Concept of ideality, Development of design equations for batch, tubular and stirred tank reactors for constant volume reactions. Evaluation of rate equations from data obtained in these reactors. (Derivations in this module evaluated in the examination may be limited to first order reactions)

MODULE V: Basics Of Non-Ideal Flow

Importance & interpretation of RTD, C, E & F curves & Statistical interpretation

Text books

- 1. Octave Levenspeil, Chemical Reaction Engineering, 3rd Edition, John Wiley & Sons, 2001.
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering. 3rd Edition Prentice
 - Hall, 2001.

- 1. J.M. Smith, Chemical Engineering Kinetics -3rd Edition, McGraw Hill., 1984
- 2. K.A. Gavhane, Chemical Reaction Engineering-I, series Volume-1, Nirali Prakashan., ISBN- 13: 9788185790879, 2011.

No.		No. of Hours					
	MODULE 1 (10 hours)						
1.1	Scope of Chemical Reaction Engineering	1					
1.2	Classification of reactions	1					
1.3	Rate equation and rate of reaction	1					
1.4	Rate equation and rate of reaction	1					
1.5	Factors affecting rate of reaction	1					
1.6	Temperature-dependency of rate constant from Arrhenius theory.	1					
1.7	Temperature-dependency of rate constant from Arrhenius theory.	1					
1.8	Molecularity and order of reactions	1					
1.9	Molecularity and order of reactions	1					
1.10	Molecularity and order of reactions	1					
	MODULE II (9 hours)						
2.1	Difference between elementary and non- elementary reactions	1					
2.2	Difference between elementary and non- elementary reactions	1					

	Kinetic models and mechanisms for non-elementary	
2.3	reactions	1
	and types of reactors	
2.4	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1
2.5	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1
2.6	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1
2.7	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1
2.8	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1

2.9	Kinetic models and mechanisms for non-elementary reactions and types of reactors	1
3.1	Interpretation of batch reactor data. Constant Volume batch reactor	1
3.2	Interpretation of batch reactor data. Constant Volume batch reactor	1
3.3	Differential method	1
3.4	Differential method	1
3.5	Differential method	1
3.6	Integral method	1
3.7	Integral method	1
3.8	half-life method	1
3.9	half-life method	
	MODULE IV (10 hours)	
4.1	Concept of ideality	1
4.2	Development of design equations for batch reactor for constant volume reactions	1
4.3	Development of design equations for batch reactor for constant volume reactions	1
4.4	Development of design equations for stirred tank reactor for constant volume reaction.	1
4.5	Development of design equations for stirred tank reactor for constant volume reactions	1
4.6	Development of design equations for tubular reactor for constant volume reactions	1

4.7	Development of design equations for tubular reactor for constant volume reactions	1
4.8	Evaluation of rate equations from data obtained in these reactors	1
4.9	Evaluation of rate equations from data obtained in these reactors	1
4.10	Evaluation of rate equations from data obtained in these reactors	1
	MODULE V (10 hours)	
5.1	Importance & interpretation of RTD	1
5.2	Importance & interpretation of RTD	1
5.3	C, E & F curves	1

5.4	C, E & F curves	1
5.5	C, E & F curves	1
5.6	Statistical interpretation	1
5.7	Statistical interpretation	1
5.8	Statistical interpretation	1
5.9	Statistical interpretation	1
5.10	Statistical interpretation	1

	CO Assessment Sample Questions
1	Define molecularity and order of a chemical reaction.
2	Distinguish between elementary and non-elementary reactions
3	Explain on different types of ideal reactors
4	The half-life period for a certain first order reaction is 2.5×10^3 s. Determine the time taken for ¹ / ₄ of the reactant to be left behind.
5	Explain the importance of RTD studies in non-ideal reactors.

SEVENTH SEMESTER

24CHP701		COMPUTER AIDED					L	т	Р	J	s	С	Yea: Introdu	r of uction	
			PRO	ROCESS DESIGN			2	1	2	0	4	4	202	24	
Pream	ble:	The	objec	ctive	of	this	cou	rse	is 1	to g	give	a i	ìoun	dation	for the
underg	gradua	ates i	n the	des	ign c	of ma	ijor e	quiț	ome	nts	use	d in	pro	cess ind	ustries
for he	at an	d ma	ass t	rans	fer.	This	cou	rse	incl	ude	s siz	zing	ofe	equipme	nt and
selecti	0n of	the 1	nterr	iai p	arts	. It a	lso c	ovei	rs tr	ie u	se o	of sta	anda	ards and	1 codes
Prerea	ucsig	Nil	equi	JIIICI	11.										
Course	e Outo	comes	s: Afte	er th	e cor	nplet	ion o	f th	e co	urse	e the	stu	dent	t will be	able to
CO 1 Congregate the data from the literature, Handbook, Codebook etc.										2.					
CO 2	Inter	pret	the li	terat	ure	data	requ	irec	l for	the	e fur	nctio	nal	design.	
CO 3	Desi	gn the	e hea	t and	d ma	iss tr	ansfe	er eo	quip	mer	nt.				
CO 4	Selec	t the	detai	ils of	acce	essor	ies ba	ased	l on	tecł	nnica	al ne	eds	and	
00 F	availa	ability	y.			4:	- f :	1		- f - /		1	1		
05	Deci	ie on	the	IIICOI	pore		$\frac{01}{DO}$ M		INC	sale	ly si	ana	arus	•	
CO	PO1	PO2	PO3	PO4	PO	PO6	PO7		208	I	P N 9	PC	010	PO11	PO12
00	101	102	100	101	5	100	101	-		-	. 07	10	10	1011	1012
CO 1	3	3													
CO 2	3	3	3	3											
CO 3	3	3	3						3						
CO 4	3	2													2
CO 5	3	2				3			3						
			Asse	essm	ent I		rn fo	r Th	eory	CO1	mpo	nen	t		
Bloom	n'e Cat	Continuous Asse				essm	ent	100		End Semester Evamina			nation		
Dioon	1 5 Ca	cgory	/	Test	.1	1e 2	st	to	ols		L'IIU	Sen	icsit	- Daann	nation
Remen	nber			~		V	/		~		V				
Under	stand			~		V	/		~					~	
Apply				✓			/		/					v	
Analys	se								v						
Evalua	ate		_						V						
Create			Ac	SASS	men	t Pati	tern f	for I	v .ah c	om	none	nt			
Bloom's Category							Co	ntin	uou	is As	sess	mer	nt Tools		
					Cl	ass	worl	<u> </u>				Test1			
Remember															
Understand							~						~		
Apply								~						v	
Analyse							V V								

Evaluate	v	
Create	v	

Mark Distribution of CIA									
0		Theo	ory [L- T]	Practi	cal [P]				
Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks		
2-1-2-0	5	10	10	10	15	10	60		

	Total Marks distribution						
Total Ma	rks	CIA (Marks)	ESE (Marks)	ESE Duration			
100		60	40		2.5 Hrs		
End Semest	er Exan	nination [ESE]:	Pattern				
PATTERN		PART A	PART B		ESE Marks		
PATTERN 3			2 questions will be given, of which 1 question sho be answered. Each ques can have a maximum of subdivisions. Each question carries marks. Marks: (1x 40 = 40 marks Time: 2.5 hours	, out ould stion of 2 40	40		
Total Marks: 0			Total Marks: [1x 40 = marks]	40			
			, <u> </u>				

MODULE I: Introduction and basic particle size analysis

DESIGN OF HEAT TRANSFER EQUIPMENT: Shell and Tube Heat exchanger, Single and Multiple effect Evaporator.

DESIGN OF MASS TRANSFER EQUIPMENT: Sieve Plate Distillation Column, Packed Bed Absorption Column.

NOTE:

• The question paper contains two full design problems (40 Marks each)

for the equipment from the above listed and students should answer anyone.

- Perry's Chemical Engineers Handbook and IS Code 4503 for heat exchangers shall be allowed in the examination. Attested copies of Dühring's charts, Steam table, Nomographs, charts and data tables used in design taken from TEMA standard/ Other editions of
- Handbook shall be allowed in the examination.

- 1. S B Thakore and B I Bhatt, Introduction to Process Engineering and Design, 3rd Edition, Tata McGraw-Hill, 2011.
- 2. Donald Q. Kern, Process Heat Transfer, McGraw Hill, 1997.
- 3. Robert E Treybal, Mass Transfer Operations, McGraw Hill, 1981.
- 4. R. H. Perry and D. W. Green, Chemical Engineering Handbook, 7th Edition, McGraw Hill, 1998.
- 5. J. M. Coulson and J. F. Richardson, Chemical Engineering, Vol. 6, Pergamon Press, 1993.
- 6. Shell and Tube Heat exchanger IS Code, IS 4503, BIS, New Delhi, 1969.

COURSE CONTENTS AND LECTURE SCHEDULE								
No.		No. of Hours						
	MODULE 1							
1.1	A general introduction to design, chemical engineering design, equipment design and design profession discussing the design process and design constraints	1						
1.2	Basic design procedure of heat transfer equipment, overall heat	1						
	transfer coefficient and dirt factors							
1.3	Shell and tube heat exchangers – construction details, selection, algorithm,	1						
1.4	Design codes, mean temperature difference, general design considerations	1						
1.5	Tube-side heat transfer coefficient and pressure drop	1						
1.6	Shell-side heat transfer coefficient and pressure drop	1						
1.7	Design problem of shell and tube heat exchanger	1						
1.8	Design problem of shell and tube heat exchanger	1						
1.9	Design problem of shell and tube heat exchanger	1						
1.10	Design problem of shell and tube heat exchanger	1						

1.11	Types of evaporators, Materials of construction	1
1.12	Design considerations	1
1.13	Design of single effect and multiple effect evaporators	1
1.14	Design problem of single effect and multiple effect evaporators	1
1.15	Design problem of single effect and multiple effect evaporators	1
1.16	Design problem of single effect and multiple effect evaporators	1
1.17	Design of distillation column, various design methods of distillation column	1
1.18	General design consideration of distillation	1
1.19	Plate efficiency, tray hydraulics of sieve trays	1
1.20	Design problem of a distillation column	1
1.21	Design problem of a distillation column	1
1.22	Design problem of a distillation column	1
1.23	Design problem of a distillation column	1
1.24	Design problem of a distillation column	1
1.25	Packed columns - type of packing	1
1.26	Packed bed height, column diameter,	1
1.27	Column internals	1
1.28	Design methods	1
1.29	Design problem of an absorption column	1
1.30	Design problem of an absorption column	1
1.31	Design problem of an absorption column	1
1.32	Design problem of an absorption column	1

No.	Торіс	No. of Hours	Experiment
1	Mixer, Heater and Pump.	2	Simulation of Mixer, Heater and Pump using ASPEN / MATLAB / UNISIM
2	Heat Exchanger	2	Simulation of Heat Exchanger using ASPEN / MATLAB / UNISIM
3	Flash Drum for Binary Mixture	2	Simulation of Flash Drum for Binary Mixture using ASPEN / MATLAB / UNISIM
4	Distillation Column	2	Simulation of Distillation Column using ASPEN / MATLAB / UNISIM
5	Refrigeration Gas Plant	2	Simulation of Refrigeration Gas Plant using ASPEN / MATLAB / UNISIM
6	Conversion Reactor	2	Simulation of Conversion Reactor using ASPEN / MATLAB / UNISIM
7	Equilibrium Reactor	2	Simulation of Equilibrium Reactor using ASPEN / MATLAB / UNISIM
8	Two Stage Compression System	2	Simulation of Two Stage Compression System using ASPEN / MATLAB / UNISIM
9	Absorption Column	2	Simulation of Absorption Column using ASPEN / MATLAB / UNISIM
10	Introduction to Dynamic Simulation	2	Introduction to Dynamic Simulation

LESSON PLAN FOR LAB COMPONENT

CO assessment sample question

Design a forward feed, double effect, long tube vertical evaporator unit to Concentrate 9000 kg/hr of 10% aqueous NaOH solution entering at 25 °C to a final concentration of 40%. Saturated steam is available at 172.2 kPa and the pressure in the second evaporator is 11.7 kPa. Boiling point elevation of the solution is 6 °C in both effects. The overall heat transfer coefficient for both effects is 1500 W/m²K. Specific heat of aqueous NaOH solution in J/kg°C is given by Cp = -1841.2 x + 4110, where x is weight fraction of NaOH. Calculate the tube sheet diameter. Estimate the size of vapour release drum with wire-mesh entrainment separator.

24CHP	24CHP702 BIOLOGY & BIOCHEMICAL		L	Т	Р	J	S	С	Year Introdu	of ction				
		ENGINEERING				2	1	2	0	4	4	20	24	
Preamble: The course amalgamates the facts from both chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms or organic molecules. This subject has various applications in the areas of biofuels pharmaceuticals, agriculture, food sciences, biotechnology and water treatment processes. This course would enable students to gain a basic knowledge on application of the biological processes to make useful chemicals which can be utilized in the aforesaid areas. Prerequisite: Nil							eering n, and rganic ofuels, water basic nicals,							
Course	Outo	omes	After	the co	mplet	tion of t	the co	ours	e tł	ne s	tuc	lent	will be at	ole to
CO1	Des Pro	cribe tista a	differ and po	ent ty otentia	ypes al of c	of cells chemica	s, cla als of	assi Tlife	fica e.	atio	n	of ki	ngdom	
CO2	Inte	erpret l	kinetic	es of er	nzyme	e-cataly	zed r	eac	tion	ıs.				
CO3	Des with	Describe Immobilized enzyme technology and metabolic pathways within the cell.												
CO4	Exp biop	Explain heat and mass transfer principles in bioreactors and bioprocess.												
CO5	Des sen	cribe o sors.	lesign	and o	perat	ion of a	ferm	ent	atic	on p	oroc	cess a	and use o	of
					CO - 2	PO MAF	PPING	ŕ						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PC)9	PO1	0 PO11	PO12
C01	3		2											2
CO2	3	3	2	2		0								2
CO3	3		2			2				_				2
CO4	3		2			2								2
CO5	3		2	2		2								2

Assessment Pattern for Theory component

	Continuo	is Assessm	End Semester	
Bloom's Category	Test1 Test 2 Other tools		Examination	
Remember	v	 ✓ 	 ✓ 	\checkmark
Understand	v	 ✓ 	v	~
Apply	v	 ✓ 	v	~
Analyse			v	
Evaluate			v	
Create			~	

	Continuous As	sessment Tools
Bloom's Category	Class work	Test1
Remember		
Understand	~	✓
Apply	v	V
Analyse	v	V
Evaluate	v	
Create	v	
Mark Di	istribution of CIA	

		Theory [L	- T]		Practio	cal [P]	
Course Structure [L-T-	Attendance	Assign ment	Test-1	Test-2	Class work	Lab Exam	Total Marks
P-J] 2-1-2-0	5	10	10	10	15	10	60

Total Marks distribution						
Total Marks	CIA (Marks) ESE (Marks)	ESE Duration			
100	60	40	2.5 Hours			
End Semester Examination [ESE]: Pattern						
PATTERN	PART A	PART B	ESE Marks			
PATTERN 2		2 questions will be g from each module, ou which 1 question should answered. Each ques can have a maximum subdivisions.	iven t of d be tion of 2			

PATTERN 2		 which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (5x 8 = 40m arks) 	40
		Time: 2.5 hours	
	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

MODULE I: Microbiology and chemicals of life

Micro Biology, Cell theory, Structure of cells, Cell fractionation, protist kingdom and their distinguishing characteristics. Chemicals of life: repetitive and non-repetitive biopolymers - lipids, sugars and polysaccharides, amino acids and proteins. Protein

structure, nucleotides- RNA and DNA.

MODULE II: Kinetics of Enzyme catalyzed reactions

Kinetics of Enzyme catalyzed reactions: simple enzyme kinetics with one or twosubstrates, Michaelis - Menten Kinetics, Evaluation of parameters in Michaelis – Menten equation, Substrate concentration dependence of enzyme catalysed reactions: substrate activation and inhibition, Modulation and regulation of enzyme activity – competitive and uncompetitive inhibition. Enzyme specificity and enzyme specificity hypotheses. Batch cultivation growth cycle (lag, exponential, stationary and death phase).

MODULE III: Enzyme Immobilization and Metabolic pathways

Enzymes of industrial importance. Immobilized enzyme technology: enzyme immobilization, medical and analytical applications of immobilized enzymes. Metabolic pathways and energetics of the cell: Metabolic reaction coupling: ATP, ADP and NAD. Oxidation and reduction- Coupling via NAD. Embden-Meyerhof pathway (EMP), Respiration - TCA cycle. Transport across cell membranes - passive transport, active transport and facilitated diffusion.

MODULE IV: Transport phenomena in Bioprocess and bioreactors

Transport phenomena in BBioprocess system-Gas-liquid mass transfer in cellular system - basic mass transfer and concepts - rates of metabolic oxygen utilization – determination of oxygen transfer rates-mass transfer across free falling or raising bubble. Biochemical reactors-specifications Continuous stirred tank bioreactor, bubble column bioreactor, Airlift bioreactors, Fluidized bed bioreactors, Packed bed bioreactor.

MODULE V: Fermentation technology and biosensors

Fermentation technology, medium formulation, design and operation of a typical aseptic, aerobic fermentation process. Different configurations for fermenters. Concept of biosensors. Physical and chemical sensors, gas analysis sensors.

Text books

- 1. James E. Bailey and David F. Ollis., "Biochemical Engineering Fundamentals". McGraw Hill International Editions.
- 2. D G Rao., "Introduction to Biochemical Engineering", Tata Mc Graw Hill.
- 3. CHEMICAL ENGINEERING3. Michael L Shuler and Frikret Khargi., "Bioprocess Engineering Basic Concepts" PHI Publications.

- 1. H. W.Blanch & D.S. Clark, Marcel Dekker, Biochemical Engineering by, Inc., 1997.
- 2. Paulin M Doran, Bioprocess Engineering principles ISBN-978-0-12220851 5

	COURSE CONTENTS AND LECTURE SCHEDULE				
No.		No. of Hours			
	MODULE I (7 hours)				
1.1	Structure of cells, prokaryotic and eukaryotic cells	1			

1.2	Cell fractionation	1
1.3	Protist kingdom and their distinguishing characteristics	1
1.4	Classification of microorganisms belonging to the kingdom of protists	1
1.5	Chemicals of life: repetitive and non-repetitive bio polymers Lipids, Sugars and polysaccharides	1
1.6	Amino acids and proteins, Protein structure, Nucleotides RNA and DNA	1
1.7	Amino acids and proteins, Protein structure, Nucleotides RNA and DNA	1
	MODULE II (9 hours)	
2.1	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates	1
2.1 2.2	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics	1
2.1 2.2 2.3	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics	1 1 1 1
2.1 2.2 2.3 2.4	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Description of Substrate activation and inhibition	1 1 1 1
2.1 2.2 2.3 2.4 2.5	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Description of Substrate activation and inhibition Modulation and regulation of enzyme activity- mechanism of reversible enzyme modulation	1 1 1 1 1 1
2.1 2.2 2.3 2.4 2.5 2.6	Enzyme substrate complex and enzyme action simple enzyme kinetics with on or two substrates Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Derivation of Michaelis - Menten Kinetics, evaluation of parameters in MM kinetics Description of Substrate activation and inhibition Modulation and regulation of enzyme activity- mechanism of reversible enzyme modulation Derivation of competitive inhibition	1 1 1 1 1 1 1

2.8	Different factors affecting enzyme activity, Enzyme specificity and enzyme specificity hypotheses	1
2.9	Batch cultivation - growth cycle (lag, exponential, stationary and death phase)	1
	MODULE III (8 hours)	
3.1	Important enzymes of industrial importance, Different methods for Enzyme immobilization	1
3.2	Medical and analytical applications of immobilized enzymes	1
3.3	Metabolic reaction coupling : ATP, ADP and NAD	1
3.4	Oxidation and reduction- Coupling via NAD	1
3.5	Embden-Meyerhof pathway (EMP), Respiration - TCA cycle	1
3.6	Embden-Meyerhof pathway (EMP), Respiration - TCA cycle	1
3.7	Transport across cell membranes - passive transport, active transport and facilitated diffusion.	1

3.8	Transport across cell membranes - passive transport, active transport and facilitated diffusion.	1
	MODULE IV (6 hours)	
4.1	Gas-liquid mass transfer in cellular system – basic mass transfer and concepts, rates of metabolic oxygen utilization	1
4.2	Determination of oxygen transfer rates-mass transfer across free falling or raising bubble	1
4.3	Specifications and operational stages in a bioreactor, Continuous stirred tank bioreactor, bubble column bioreactor	1
4.4	Specifications and operational stages in a bioreactor, Continuous stirred tank bioreactor, bubble column bioreactor	1
4.5	Airlift bioreactors, Fluidized bed bioreactors,	1
4.6	Airlift bioreactors, Fluidized bed bioreactors	1
	MODULE V (6 hours)	
5.1	Medium formulation in fermentation	1
5.2	Design and operation of a typical aseptic, aerobic fermentation process.	1
5.3	Design and operation of a typical aseptic, aerobic fermentation process.	1
5.4	Alternate bioreactor configurations	1

5.5	Sensors of the physical environment, gas analysis sensors	1
5.6	Sensors of the physical environment, gas analysis sensors	1

No.	Торіс	No. of Hours	Experiment							
1	Cell culture	2	Isolation of high yielding microbial strains for the production of commercially important enzymes.							
2	Chemicals of Life	2	Estimation of different macromolecules by visible spectrophotometer							
2	Chemicals of Life	2	Verification of Lambert – Beer's Law by UV – VIS spectrophotometer.							
4	Chemicals of Life	2	Determination of optical activity of simple sugars by polarimetry							
5	Enzyme kinetics	2	Determination of enzyme activity and specific activity.							
6	Enzyme kinetics	2	Characterization of enzymes-Effect of pH, temperature and inhibitors on enzyme activity etc.							
7	Enzyme kinetics	2	Development of enzyme assay methods.							
8	Protein purification	2	Purify a target protein from a complex mixture using techniques such as chromatography. Assess the purity and yield of the isolated protein.							
9	Bioremediation assessment	2	Design and conduct a bioremediation experiment using microorganisms to degrade a specific pollutant. Monitor changes in pollutant concentration over time.							
10	Immobilization of enzymes	2	Immobilization of enzymes –Different Techniques such as adsorption, entrapment, encapsulation and crosslinking.							
	CO Assess	nent Sa	ample Questions							
1	Compare eukaryotic as structure and function	nd prok Is	aryotic cells in terms of internal							
2	The following initial rate data were obtained as a function of initial substrate concentration. Evaluate the Michaelis- Menten kinetic parameters by employing the Eadie-Hofstee plot.									
3	Explain different method	ods for i	immobilization of enzymes.							
4	Explain the oxygen tra of mass transfer coeffic	Explain the oxygen transfer in fermentation process with the help of mass transfer coefficient.								

Explain the medium formulation in a fermentation process

5

LESSON PLAN FOR LAB COMPONENT

24CHR705	Major Project	L	Т	Р	J	S	С	Year of Introduction
		0	0	14	0	14	7	2024

Preamble: Research based Mini Project focuses on strengthening the understanding of student's fundamental concepts through the application of theoretical concepts and to boost their skills and widen the horizon of their thinking in research. The course will provide an opportunity to identify technology/research gaps and propose innovative/creative solutions. The course will develop skills in doing literature survey, technical presentation and report preparation.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

	1
CO1	Analyze existing literature in the chosen field or conduct need based analysis and identify research gaps for further investigation.
CO2	Conceive a research statement and formulate research objectives.
CO3	Design and implement a well-structured research plan, outlining the key variables, hypotheses and experimental/analytical methods required to address the research questions.
CO4	Interpret results effectively to draw meaningful conclusions.

CO5 Prepare a technical report and make effective presentations.

CO - PO MAPPING												
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	P012
CO 1	3	3		2				3	3			3
CO2	3	3		3					3			3
CO3	3	3	3	3	1				3	3	2	3
CO4	3	2	3						3	3		3
CO5	3							3	3	3		

Bloom's Category	Continuous assessment tools								
Bioom's Category	Evaluation 1	Evaluation 2	Evaluation 3						
Remember									
Understand	~	 ✓ 	V						
Apply	v	 ✓ 	V						
Analyse	v	 ✓ 	V						
Evaluate		 ✓ 	V						
Create		 ✓ 	 ✓ 						

Mark Distribution of CIA									
Course Structure [L-T-P-J]	Project guide	Interim Evaluation	Draft Report	Final Report	Final Evaluation	Total Marks			
0-0-12-0	25	25	5	10	35	100			

Total Mark distribution							
Total Marks	CIA (Marks)						
100	100						
General guidelines							

• Choosing a topic

Research based mini project shall be executed as a group activity where each group can have a maximum of four students and shall identify a topic of interest in consultation with Mini Project Coordinator that shall lead to their dissertation/final year project. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design / fabrication / synthesis / analysis / development of codes or programs to achieve the objectives.

• Evaluation pattern

The progress of the Research based Mini Project is evaluated based on three reviews, two interim reviews and a final review. Students must submit a report during the final review. Credits can be assigned to a student for research based mini project if he/she earns a pass grade in the final review.

• Evaluation committee

Continuous Internal Evaluation (CIE) Committee shall comprise of three members. Guide shall be one member in the CIE committee. Final Evaluation Committee shall comprise of three members- department project coordinator, guide and a member nominated by Head of the Department.

SEVENTH SEMESTER PROFESSIONAL ELECTIVE-3

MUI 24CHE713 BIO				ICIPAI MEDIC	SOLI	D ANI ASTE)	L	Т	Р	J	s c	Ye Introd	ear of uction
			N	IANAG	EME	NT		3	0	0	0	3 3	20	24
Prea mana techr wast	Preamble: This course provides a comprehensive overview of waste management practices, covering solid waste characteristics, disposal techniques, biomedical waste categorization, and the development of effective waste management policies.													
Prere	Prerequisite: Nil													
Cour	Course Outcomes: After the completion of the course the student will be able to													
CO1	Desci	ribe s	olid wa	aste ty	pes ar	nd infl	uenci	ng f	acto	ors.				
CO2	Devel	op eff	icient	solid v	vaste o	collect	ion ai	nd p	roc	essi	ng s	syste	ms.	
CO3	Apply regula	ations	copriat 5.	e disp	osal n	nethoc	ls cor	iside	erin	g su	ista	inab	ility an	d
CO4	Mana	ige bi	omedio	cal was	ste thr	ough	prope	r ca	teg	oriza	tio	n an	d treatr	nent.
CO5	Devel engag	op co gemer	mpreh It and	lensive econor	e waste nic fea	e mana asibilit	agemo y.	ent j	olar	is w	ith	stak	eholder	
					CO -	PO M	APPIN	G						
CO	PO1	PO2	PO3	PO4	P05	PO6	PO7	P	08	PO	9 I	PO1 0	PO11	PO12
CO1	. 3						3							
CO2	2					2						3		
CO3	8 2					2	3		2	3				
CO4	2					2			3		_		0	
05	2				A	3	Datt			3			3	3
				Conti	ASSES		Fall	ot T	0010	2				
Blo	oom's (Categ	ory	Tes	Test1 Test 2		Otl too	ner ols	5	End Semester Examination			er on	
Rem	ember			~		V	•	V	/		 ✓ 			
Unde	erstan	d		v		V	•	V	/				~	
Appl	У			~		V	•	V	/				~	
Anal	yse							v	/					
Eval	uate							V	/					
Crea	te							V	/					
				Ma	ark Di	stribu	tion	ofC	[A					
Course							Theo	ry []	- T]			_	
Structure Atter [L-T-P-J]		Atten	dance	Assi	gnment T		Test-1		Tes		-2	Total Marks		
3-0-0-0				5		15		10		10		40		

Total Mark distribution									
Total Ma	ırks	CIA (Marks)	E	ESE (Marks)	ES	SE Duration			
100		40		60	3 Hrs.				
End Semester	[.] Exami	nation [ESE]: Pat	tern						
PATTERN		PART A		PART B		ESE Marks			
PATTERN 1	10 Qu quest mark Mark mark	uestions, each ion carries 2 s s: (2x10 =20 s)	2 que from o which answe can h subdiv Each Marks Time:	estions will be each module, o 1 question sho red. Each qu ave a maximun visions. question carr 8 marks. : (5x8 = 40 mark 3 hours	given out of uld be estion n of 2 ies cs)	60			
	Total	Marks: 20	marks	Marks: [5x8 = 40 5]	J				

MODULE I: Introduction to Waste Management (7 Hrs.)

Understanding the concept of waste management, types of solid waste, Properties of Solid wastes, Waste generation, Sampling and analysis, Characteristics of solid wastes - Energy content, Chemical content, Estimation of chemical composition of a

solid waste sample. Generation rates - Factors affecting generation rates.

MODULE II: Municipal Solid Waste (MSW) Management (8 Hrs.)

Collection of solid waste, On-site storage methods-containers, their type, size and location, Collection Systems-Vehicles, Types of collection system – HCS, SCS, Determination of vehicle and labor requirements, Collection routing, route balancing and transfer stations, Transfer methods, Processing methods.

MODULE III: Municipal solid waste disposal (8 Hrs.)

Disposal methods such as sanitary landfill –methods, leachate in landfills – control of leachate movement, Gas movement – control, Design and operation of landfills, Landfarming, deep well injection etc.

MODULE IV: Biomedical Waste (BMW) Management (6 Hrs.)

Classification and categorization of biomedical waste, Risks associated with improper BMW management, Segregation, collection, and storage of BMW, Treatment and disposal methods for BMW, Regulatory requirements and guidelines for BMW management.

MODULE V: Waste Management Planning and Policy (6 Hrs.)

Development of waste management plans for municipalities and healthcare facilities, Stakeholder engagement and community participation in waste. Management, Economic considerations and feasibility analysis for waste management projects, Policy frameworks and governance for effective waste management, Case studies highlighting successful waste management policies and strategies.

Text books

- 1. Howard S.Peavy, Donald R.Rowe, George Tchobanoglous, Environmental Engineering, McGraw Hill. New York, 1985.
- 2. Frank Kreith, George Tchobanoglous, Handbook of Solid Waste Management, McGraw Hill Publishers, 2002

- 1. P.Aarne Vesilind and William Worrell, Solid waste Engineering, Cengage Learning, Asia Pte Limited, 2012.
- 2. Gerard Kiely, Environmental Engineering, McGraw Hill, New Delhi, 2008.
- 3. Nicholas P. Cheremisinoff, Handbook of Solid Waste Management and Waste Minimization Technologies, Butterworth Heinemann,2002.
- 4. Luis F. Diaz, George M. Savage, Linda L. Eggerth, Larry, Rosenberg, Solid Waste Management, United Nations Environment Programme, Paris, 2005.

	COURSE CONTENTS AND LECTURE SCHEDULE							
No.		No. of Hours						
MODULE I								
1.1	Understanding the concept of waste management	1						
1.2	types of solid waste, Properties of Solid wastes	1						
1.3	Waste generation, Sampling and analysis, Characteristics of solid wastes	1						
1.4	Waste generation, Sampling and analysis, Characteristics of solid wastes	1						
1.5	Energy content, Chemical content	1						
1.6	Estimation of chemical composition of a solid waste sample	1						
1.7	Generation rates - Factors affecting generation rates.	1						
	MODULE II							
2.1	Collection of solid waste	1						
2.2	On-site storage methods-containers, their type, size and location	1						
2.3	On-site storage methods-containers, their type, size and location	1						
2.4	Collection Systems-Vehicles, Types of collection system – HCS,SCS	1						
2.5	Collection Systems-Vehicles, Types of collection system – HCS,SCS	1						
2.6	Determination of vehicle and labour requirements, Collection routing, route balancing and transfer stations	1						
2.7	Transfer methods, Processing methods	1						
2.8	Transfer methods, Processing methods	1						
	MODULE III							
3.1	Disposal methods such as sanitary landfill –methods,	1						

3.2	leachate in landfills, control of leachate movement,	1
3.3	leachate in landfills, control of leachate movement	1
3.4	Gas movement – control	1
3.5	Gas movement – control	1
3.6	Design and operation of landfills	1
3.7	Design and operation of landfills	1
3.8	Landfarming, deep well injection etc.	1
	MODULE IV	
4.1	Classification and categorization of biomedical waste	1
4.2	Risks associated with improper BMW management,	1
4.3	Segregation	1
4.4	collection, and storage of BMW, Treatment and disposal methods for BMW	1
4.5	collection, and storage of BMW, Treatment and disposal methods for BMW	1
4.6	Regulatory requirements and guidelines for BMW management.	1
	MODULE V	
5.1	Development of waste management plans for municipalities and healthcare facilities	1
5.2	Stakeholder engagement and community participation in waste management	1
5.3	Economic considerations and feasibility analysis for waste management projects,	1
5.4	Economic considerations and feasibility analysis for waste management projects	1
5.5	Policy frameworks and governance for effective waste management	1
5.6	Case studies highlighting successful waste management policies and strategies	1

	CO Assessment Sample Questions
1	Name major contributors to solid waste generation and provide examples
2	Explain the significance of efficient solid waste collection methods for sustainability
3	Devise an appropriate solid waste disposal strategy for an urban area, justifying your choice
4	Analyze risks linked to improper biomedical waste management and evaluate their implication
5	Assess economic feasibility of waste management projects, comparing costs and benefits
6	Develop a comprehensive waste management plan with stakeholder engagement strategies

24CHE	723 H	lazard	Anai	lysis a	ind R	Risk		L	Т	Р	J	S	С	Ye: Intro	ar of ductio n
		19.	lalla	geme	ΠC			3	0	0	0	3	3	20)24
Preamt stands into the chemic	ble: In the d as a param e systemati cal process	lynami 10unt c c ident industi	c and consi ificat ries.	d com derati tion, a	plex o on. T nalys	domai 'his su sis and	n o ibje 1 m	f ch ct s ana	emic erve: igem	cal p s as ent	oroce a pi of po	ss : vot oter	ind al e ntia	ustries xplora l hazaı	, safety tion rds in
Prerequisite: Nil															
Course	Outcomes	: After	the c	comple	etion	of the	col	ırse	e the	stu	dent	wi	ll be	e able t	0
CO 1	Identify ar	nd asse	ess tł	ne risk	and	hazar	ds	of p	roce	ss a	nd o	per	atio	on.	
CO 2	Explain di	fferent	type	s of in	dices	s used	in	haz	ard s	surv	veys.				
CO 3	Explain of techniques	lifferen s in the	it ty e woi	pes o kplac	of ha e.	azard	ide	enti	ficati	ion	and	l r	isk	asses	sment
CO 4	Determine uses, bene	e the m efits an	ain p d lin	proces nitatio	s haz ns	ard a	naly	ysis	tool	s us	ed a	nd	con	npare	their
CO 5	Give reco applying L	ommer OPA n	ndati nethc	ons odolog	bas y.	ed	C	n	ri	sk	d	eci	sior	ns b	у
				C	0 - P	O MAI	PPIN	IG							
CO	PO1	PO2	PO 3	PO4	PO5	PO6	PC	07	POS	3	P09	Р(0)1	PO1 1	PO12
CO 1	3	2	3			2									
CO 2	3	2	2			2									
CO 3	3		2			2									
CO 4	3		2			2									
CO 5	3		2			2	<u>'</u> 2	2	2						
				Ass	essm	lent P	att	ern							
				Co	ntin	uous A	ASS	essi	men	t		F		S	tor
Bloom	's Category	7		То	Test 1 Test 2			Other			Enu Semesu Examinatio			on	
				10	561	1050	4	t	ools			_			
Remem	ber			~		v			~					v	
Unders	Understand V V V														
Apply	Apply					~			~					~	
Analyse									~						
Evaluate									~						
Create									~						
	Mark Distribution of CIA														

Course			The		Total				
Structure [L-T-P-J]	Attendance	As	signment	Test-1	T	est-2	Mars		
3-0-0-0	5		15	10]	10	40		
	·	Total	Mark distribı	ıtion					
Total Ma	rks CIA (M	arks)	ESE (Ma	arks)	ES	SE Durati	ion		
100	40		60			3 hours	rs		
	End Semester Examination [ESE]: Pattern								
PATTERN	PART A		PA	RT B		ESE I	Marks		
PATTERN 1	10 Questions, ead question carries 2 marks Marks: (2x10 =20 marks)	ch 2	2 questions v each module, question shot Each question maximum of Each question marks. Marks: (5x8 = Time: 3 hours	vill be give , out of wl uld be an n can hav 2 subdivi oncarries = 40 mark s	en from hich 1 swered. ze a sions. 8 sions. 8	6	60		
	Total Marks: 20		Total Marks: [5						

MODULE I: Hazard Identification techniques

Hazard and risk-Major industrial hazards-Structure of hazard identification and risk assessment. Identification of hazards: Inventory analysis, What If analysis, The Dow Fire and Explosion Hazard Index, The Mond Index, Preliminary hazard analysis, Hazard and Operability study (HAZOP), Case studies.

MODULE II: Plant availability and process reliability

Plant availability and process reliability: The reliability function, probability relationships, Failure rate, bathtub curve, simple reliability estimation, MTBF and MTTF, Ways of improving plant availability.

Fault tree analysis – logic symbols, minimal cut set, logic gates, fault tree quantification. Event tree analysis: event tree construction, advantages and disadvantages of ETA. Failure mode and Effect Analysis (FMEA) – methodology, criticality analysis

MODULE III: Consequence modelling

Source models – discharge rate models Dispersion models: Plume model Explosions and fires – Vapour cloud explosions, BLEVE, flash fires, Pool fires, jet fires. Software application for effect and damage calculations: ALOHA and PHAST

MODULE IV: Measurement, Calculation, and Presentation of Risk Estimates

Steps in Chemical Process Quantitative risk analysis, Accepted and imposed risk, Risk perception, ALARP, Acceptance criteria for risk, Presentation of measures of riskrisk contour, F-N curve. Calculation of individual risk and Societal risk

MODULE V: Layer of Protection Analysis

Layer of Protection Analysis (LOPA)-LOPA methodology- Scenario development. Independent protection layers – IPL criteria, allocation of IPL credit –safety instrumented system, safety instrumented function. Risk tolerance criteria-Safety integrity level (SIL) assignment, Interpreting LOPA results -risk decisions and making recommendations.

Text books

- 1. Daniel A Crowl& Joseph F Louvar, Chemical Process Safety, Second Edition, Prentice-Hall.
- 2. L.S. Srinath, Reliability Engineering, Affiliated East-West Press, New Delhi, (2005).

- 1. Sam Mannan (Editor). Lee's Loss Prevention in the Process Industries. (Fourth edition). Butterworth-Heinemann Ltd., UK. (2012).
- 2. AIChE/CCPS. Guidelines for Chemical Process Quantitative Risk Analysis. (second edition). Centre for Chemical Process Safety, American Institute of Chemical Engineers, New York. (2000).
- 3. Bob Skelton. Process safety analysis: An Introduction, Institution of Chemical Engineers. (1997)
- 4. AIChE/CCPS. Guidelines for Hazard Evaluation Procedures. (Second edition). Centre for Chemical Process Safety, American Institute of Chemical Engineers, New York. (1992).

COURSE CONTENTS AND LECTURE SCHEDULE										
No.		No. of Hours								
	MODULE 1 (6 hours)									
1.1	Hazard and risk-Major industrial hazards-Structure of hazard identification and risk assessment.	1								
1.2	Inventory analysis, What If analysis	1								
1.3	The Dow Fire and Explosion Hazard Index	1								
1.4	The Mond Index, Preliminary hazard analysis	1								
1.5	Hazard and Operability study (HAZOP)	1								
1.6	Case studies	1								
	MODULE II (10 hours)									
2.1	The reliability function, probability relationships	1								
2.2	Failure rate, bathtub curve	1								
2.3	Simple reliability estimation	1								

2.4	MTBF and MTTF	1
2.5	Ways of improving plant availability	1
2.6	Fault tree analysis – logic symbols, minimal cut set, logic gates, fault tree quantification.	1
2.7	Fault tree analysis – logic symbols, minimal cut set, logic gates, fault tree quantification.	1
2.8	Event tree analysis –event tree construction, advantages and disadvantages of ETA.	1
2.9	Event tree analysis-event tree construction, advantages and disadvantages of ETA.	1
2.10	Failure mode and Effect Analysis (FMEA) – methodology, criticality analysis	1
	MODULE III (8hours)	
3.1	Source models – discharge rate models	1
3.2	Source models – discharge rate models	1
3.3	Dispersion models: Plume model	1
3.4	Model for Vapour cloud explosions	1
3.5	Model for BLEVE	1
3.6	Models for flash fire and pool fire	1
3.7	Model for jet fire	1
3.8	Software application for effect and damage calculations: ALOHA and PHAST	1
	MODULE IV (6 hours)	
4.1	Steps in Chemical Process Quantitative risk analysis	1
4.2	Accepted and imposed risk, Risk perception	1
4.3	ALARP, Acceptance criteria for risk	1
4.4	Presentation of measures of risk - risk contour, F-N curve	1
4.5	Calculation of individual risk	1
4.6	Calculation of Societal risk	1
	MODULE V (5 hours)	
5.1	Layer of Protection Analysis (LOPA)-LOPA methodology- Scenario development.	1
5.2	Independent protection layers – IPL criteria, allocation of IPL credit	1

5.3	safety instrumented system, safety instrumented function	1
5.4	Risk tolerance criteria-Safety integrity level (SIL) assignment	1
5.5	Interpreting LOPA results -risk decisions and making recommendations.	1

	CO Assessment sample Questions
1	Explain in detail about classification of hazards in chemical process Industries.
2	Explain ALARP triangle and give its significance in risk reduction
3	Construct an event tree for LPG release from a storage tank located in an LPG bottling plant. Assume frequency values for different situations
4	 A gas with a molecular weight of 30 is used in a particular process. A source model study indicates that for a particular accident outcome 1.0 kg of gas will be released instantaneously. The release will occur at ground level. The plant fence line is 500 m away from the release. Determine: (i) The time required after the release for the center of the puff to reach the plant fence line. Assume a wind speed of 2 m/s. (ii) The maximum concentration of the gas reached outside the fence line.
5	Determine the consequence frequency for a cooling water failure if the system is designed with two IPLs. The IPLs are human interaction with 10-min response time [PFD = 10^{-1} per year] and a basic process control system (BPCS) [PFD = 10^{-1} per year]. Frequency of cooling water failure is 0.1 per year.

24CHE733		СОМН	PUTAI	IONA	L FLUI	D DYN	IAMIC	s L	Т	Р	J	S	С	Yo Intro	ear odu	of ction
								3	0	0	0	3	3	2	024	F
Preamble: Computational Fluid Dynamics								is u	sed	as	a r	ese	eard	ch and	1 de	esign
tool. C	FD car	ı be ap	plied	to maj	ority c	of engi	neerin	lg pro	oble	ems	su	ch	as	chem	ical	and
minera	al proc	essing	, envi	ronme	ntal p	roblen	ns, aei	rospa	ace	fiel	ds,	na	ava	l arch	itec	eture
and b	and biomedical engineering. It can be used as an education tool to learn basic															
therma	al-fluid	scien	ce.													
Prereg	Prerequisite: Nil															
Course	Dogor	iho ho				nd nr		roa t	ne :	stuc		נ א רד		olutio)
CO1	Apply	lue Das	odgo				d on gi		ina	fun	v qe	CF.	DS		118. oolu	10
02	practi	cal pro	blem	51 Dasi 8.		ice all	u engi	meer	mg	Iun	lua	1110	-1116	115 10	5010	e
CO3	Solve	the go	vernir	ng equ	ations	for flu	id flov	w nu	me	rical	lly.					
CO4	Imple	ment g	grid ge	nerati	on, as	sess st	tabilit	y and	d co	ondı	ıct	a	gric	l conv	erg	ence
CO5	Apply	turbu	lence	model	s to er	nginee	ring fl	uid f	low	, pro	oble	em	s.			
	11 5				CO -	PO MA	PPINO	G		1						
СО	PO1	PO2	PO3	PO4	P05	P06	PO7	PO	8	PO	9	P	01	0 РО	11	PO 12
CO1	3	3	3	2												
CO2	3	3	3	2												
CO3	3	3	3	2	2											
CO4	3	3	3	2	2									3	}	
CO5	3	3	3	2	2									3	}	
				-	Assess	ment	Patte	rn	-							
D1 -				Conti	nuous	s Asses	smen	t To	ols			Er	nd S	Semes	ter	
BIC	om's C	atego	ry	Tes	stl	Test 2		tool	er ls	Examination						
Reme	mber			~		~		~						v		
Unde	rstand			~		~	•	~		 ✓ 						
Apply	7			~		~	•	~						v		
Analy	rse							~								
Evalu	late							~								
Create							<u> </u>									
				Ma	ark Dis	stribul	tion o	f CIA	`							
Co	urse						Theor	у [L-	T]							
Structure [L-T-P-J] Atter		ttend	ance	Assi	gnment '		Test-	1	Test-2		T M	ota ark	1 .s			
3-0-0-0 5		5			15		10		10 40		40					

Total Mark distribution									
Total Mar	ks	CIA (Marks)	ESE (Marks)	J	ESE Duration				
100		40	60		3 hours				
End Semeste	r Exar	nination [ESE]: P	attern						
PATTERN		PART A	PART B		ESE Marks				
PATTERN 1	10 Q ques mark Mark mark	uestions, each tion carries 2 cs cs: (2x10 =20 cs) Marks: 20	 2 questions will be from each module, out of 1 question should answered. Each qui can have a maximur subdivisions. Each question carring 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours Total Marks: [5x8 = 4 	e given which d be estion n of 2 ries ks)	60				

MODULE I: Introduction (8 hours)

Introduction: Need of CFD as an analysis tool, comparison of experimental, theoretical and computational approaches, Applications – automobile, environmental engineering, chemical engineering, CFD software packages and tools. CFD solution procedure: pre-processing, numerical solution – CFD solver, post processing. Ordinary and partial differential equations, classification of partial differential equations (PDE): physical classification – equilibrium and marching problems; mathematical classification – hyperbolic, parabolic and elliptic PDEs, well posed problems.

MODULE II: Review of governing equations (6 hours)

Review of governing equations: Continuity equation, Momentum equation, Energy equation, Navier – Stokes equation, generic form of governing equations, boundary conditions - types of boundary conditions: Neumann, Dirichlet, Robin, mixed boundary condition. Turbulence modeling – k-ɛ turbulence model.

MODULE III: Basic concepts of CFD (6 hours)

Basic concepts of CFD: Introduction to discretization, Finite difference approximation of a derivative, discretization of differential equations using finite differences, consistency, convergence and stability (concepts alone), concept of explicit and implicit methods, Crank Nicholson scheme FTCS only.

MODULE IV: Finite volume discretization (8 hours)

Finite Volume Discretization: Diffusion problem, convection-diffusion problem, properties of discretization schemes – conservativeness, boundedness, transportiveness. Solution to discretized equations: TDMA, Jacobi, Gauss-Seidel, Gauss elimination methods.

MODULE V: Detailed study of Navier-Stokes Equation (8 hours)

Detailed study of Navier stokes Equation-Solution of the Navier Stokes Equations-Discretization of convective, viscous, pressure and body force terms-conservation properties-grid arrangement colocated and staggered pressure equation and its solutions—implicit and explicit methods-implicit pressure correction methods-Fractional Step method-SIMPLE algorithm for a colocated Variable arrangement. Grid generation: structured and unstructured grid, grid spacing, Cartesian and curvilinear grids, grid independence, hybrid grid.

Text books

- 1. John C Tannehill, D A Anderson, R H Pletcher, Computational fluid Mechanics and Heat transfer, , Taylor & Francis Publishers.
- 2. John D Anderson, Computational Fluid Dynamics The basics with applications, McGrawHill.
- 3. H Versteeg, M Malasekara, An introduction to Computational Fluid Dynamics, Pearson.

- 1. Vivek V. Ranade, Computational Fluid Dynamics for Reactor Engineering De Gruyter, 1995.
- 2. K Muralidhar and Sundararajan, Computational Fluid flow and Heat transfer, Suhas V Patankar, Numerical heat transfer and fluid flow.
- 3. Pradeep Niyogi, S K Chakrabarthy, M K Laha, Pearson, Introduction to Computational Fluid Dynamics.
- 4. Gautam Biswas, Somenath Mukherjee, Narosa, Computational Fluid Dynamics.
- 5. Sreenivas Jayanti, Computational fluid dynamics for Engineers and Scientists, Springer.

COURSE CONTENTS AND LECTURE SCHEDULE								
No.								
MODULE I								
1.1	Need of CFD, advantages of CFD method, applications	1						
1.2	solution procedure – pre-processing, solver, post processing – geometry, meshing, implementation of boundary conditions etc., computer graphic techniques	1						
1.3	solution procedure - pre-processing, solver, post processing – geometry, meshing, implementation boundary	1						

	conditions etc., computer graphic techniques						
1.4	PDE, classification,	1					
1.5	Equilibrium & marching problems	1					
1.6	Hyperbolic, elliptic, parabolic PDE	1					
1.7	Well posed problems	1					
1.8	Well posed problems	1					
MODULE II							
2.1	Continuity, momentum and energy equation	1					

2.2	Continuity, momentum and energy equation	1
2.2	Navier – Stokes equation	1
2.3	Generic form of governing equation	1
2.4	Boundary conditions – need, various types with examples	1
2.5	Turbulence modelling - k-ε turbulence model	1
2.6	Turbulence modelling - k-ε turbulence model	1
	MODULE III	
3.1	Discretization, finite difference approximation of a derivative, truncation error	1
3.2	Discretization of equations using finite difference	1
3.3	Concept of consistency, convergence and stability	1
3.4	Explicit and implicit methods	1
3.5	Crank- Nicolson scheme - FTCS	1
3.6	Crank- Nicolson scheme - FTCS	1
	MODULE IV	
4.1	Diffusion problem	1
4.2	Convection-diffusion problem	1
4.3	Properties of discretization schemes - conservativeness, boundedness, transportiveness.	1
4.4	Solution methods – TDMA, Jacobi	1
4.6	Solution methods – TDMA, Jacobi	1
4.7	Gauss Siedel and Gauss elimination	1
4.8	Gauss Siedel and Gauss elimination	1
	MODULE V	
5.1	Solution of Navier Stokes equations	1

5.2	Discretization of convective, viscous, pressure and body force terms.	1						
5.3	Discretization of convective, viscous, pressure and body force terms.	1						
5.4	Conservation properties-grid arrangement.	1						
5.5	Staggered pressure equation and its solutions—implicit and explicit methods –	1						
5.6	Implicit pressure correction method							
5.7	Fractional Step method-SIMPLE algorithm for a colocated Variable arrangement.	1						
5.8	Grid generation – structured & unstructured grids, grid spacing, Cartesian and curvilinear grids, grid independence, hybrid grid.	1						

CO Assessment Sample Questions							
1	Describe the main elements involved in a complete CFD analysis.						
2	Determine velocity profile for steady incompressible laminar flow through the space between two parallel plates.						
3	Explain implicit and explicit methods.						
4	Write a note on grid independence.						
5	Discuss on k-ε turbulence model.						

24CHE743	PIPELINE TRANSPORTATION			Р	J	S	С	Year of Introduction
270112770	OF OIL & GAS	3	0	0	0	3	3	2024

Preamble: This course provides students with a comprehensive understanding of oil and gas pipeline transportation, covering various aspects such as pipeline design, construction, pressure drop estimation, pumps and compressors, and pipeline issues. The course is industry-relevant, focusing on practical skills, safety and compliance, problem-solving, and technological awareness. It equips students with the foundational knowledge for careers in oil and gas, preparing them for real-world scenarios and ensuring compliance with regulations. The course also focuses on enhancing analytical and problem-solving skills through exposure to pipeline transportation challenges.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to C · · · 1

CO 1	Evaluin the basis of ningling approximations for transporting oil and goe
	Explain the basis of pipeline operations for transporting on and gas.
CO 2	Apply various equations to calculate pressure drop in oil and gas

pipelines.

Describe the laying and construction activities of pipelines. **CO 3**

CO 4	CO 4 Explain the types and characteristics of pumps and compressors													
<u> </u>	Used for transportation of oil and gas.													
000	and methods to mitigate them.													
CO - PO MAPPING														
CO	PO	1 PO 2	2 PO3	PO4	PO5	5 PO6	PO7	PO8	PO9	PO10	PO	11 PO12		
CO 1	3											1		
CO 2	3		2			2	2					1		
CO 3	3									2		1		
CO 4	3											1		
CO 5	3					2						1		
					Asses	sment	Patt	tern						
				Cor	ntinu	ous As	ssessi	ment						
Blo	om's	Catego	rv			Tools	5		End	l Seme	ester ion			
		0		Tes	st1	Test	2	Other	Exa	minati				
Pemen	nhor			./			/	.0015						
Under	stand						/	· ·			V V			
Apply	otana			· ·			,	~			<u> </u>			
Analyz	e			•		-		V			•			
Evalua	ate							v						
Create								~						
				Ма	rk Di	stribu	ition	of CIA						
Co	urse					Theory [L-T]								
Str	uctur	At	tenda	ince								Total		
e [L-T-P-					Assi	gnmei	nt '	Test-1		Test-2	Marks			
J														
3-0	-0-0		5	15 10 10						10	40			
				То	tal M	l ark d i	istrit	oution						
Tot	al Ma	rks	CIA	(Mar	ks)	E	ESE (I	Marks)	E	SE I	E Duration		
1	00			40			e	50			3 hrs			
End Se	emeste	er Exar	ninatio	n [ES	6E]: P	<u>attern</u>								
PATTE	ERN		PART	Α			P	PART I	3		ESE Marks			
		10 Qu	h 2	2 que	stior									
		questi	2 f	from e	each	ut of								
		marks					1 qu	ald be						
PATTEI	RN 1	1					erea.							
				subdiv	ave a vision									
		Marks				60								
		marks)					que	ies						
				8 marks.										
			1	Marks	: (5x8	cs)								
					r	<u>Fime</u>	3 hai	110						
		Total	Marke	20	r -	Fime:	3 hou Mark	irs s: [5x8	8 = 40)				
MODULE I : Basics of Pipeline Operations (6 hr)

Methods of Transporting Oil & Gas Importance of Pipelines, Pipeline Systems Design Life of Pipelines, Growth of Pipeline Industry in India, Codes and Standards used in Pipeline industry, Properties of Gas and Liquid, SI and USCS System Standard Conditions. Treatment techniques for removal of sulfur compounds to improve performance.

MODULE II : Pressure Drop Estimations (8 hr)

Gas flow equations, Transmission Factor, Head in Pipelines (Gradient and Elevation), Oil Flow equations

MODULE III : Pipeline Construction (7 hr)

Overview of Oil and Gas Pipelines, Regulatory Framework and Safety Standards, Material Selection and Pipeline Components, Construction Techniques and Challenges Pipe line Laying, Pipe Specifications, Route Surveying, Trenching, Welding, Wrapping, Pig launchers and receivers

MODULE IV : Pumps and Compressors (7 hr)

Types of Pumps and Compressors, Pumps and Compressors Characteristics, Single and Multistage pumps and compressors, Congealing

MODULE V : Pipeline issues and Mitigation Measures and future trends (6 hr)

Challenges in Pipeline Transportation, Corrosion and Integrity Management, Managing High Pressure Systems, External Threats and Security Measures. Future Trends and Innovations in Pipeline Technology: Automation and Remote Monitoring, Advanced Materials and Coatings, Emerging Technologies in Pipeline Transportation. Wax, Scaling, Condensate, Corrosion, Thermal Variations in Pipelines, Automation and SCADA

Text books

- 1. Menon, E. S. (2005). Gas pipeline hydraulics, CRC Press, Taylor and Francis Group, Boca Raton, FL.
- 2. Menon, E. S. (2005). Liquid pipeline hydraulics, CRC Press, Taylor and Francis Group, Boca Raton, FL.
- 3. E.W. McAllister (2002). Pipeline Rules of Thumb Handbook, Gulf Professional Publishing

Reference books

- 1. Duraid, A. (2010).A Quick Guide to Pipeline Engineering, Wood hand Publishing, Cambridge, England
- 2. Arnold, K. (1989). Surface Production Operations. Gulf Publishing Company, Houston, Texas
- 3. George A. Antaki (2003) Piping and Pipeline Engineering:Design, Construction, Maintenance, Integrity and Repair, Marcel Dekker Inc.

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1	

1.1	1				
1.2	Importance of Pipelines, Pipeline Systems	1			
1.3	Design Life of Pipelines, Growth of Pipeline Industry in India	1			
1.4	Codes and Standards used in Pipeline industry,	1			
1.5	Properties of Gas and Liquid, SI and USCS System Standard Conditions	1			
1.6	Treatment techniques for removal of sulfur compounds to improve performance.	1			
	MODULE II				
2.1	Gas flow equations	1			
2.2	Gas flow equations	1			
2.3	Gas flow equations	1			
2.4	Transmission Factor	1			
2.5	Head in Pipelines (Gradient and Elevation)	1			
2.6	Head in Pipelines (Gradient and Elevation)	1			
2.7	Oil Flow equations	1			
2.8	Oil Flow equations	1			
	MODULE III				
3.1	Overview of Oil and Gas Pipelines, Regulatory Framework and Safety Standards	1			
3.2	Material Selection and Pipeline Components, Construction Techniques and Challenges	1			
3.3	Pipe line Laying and Pipe Specifications Route Surveying	1			
3.4	Trenching	1			
3.5	Welding	1			
3.6	Wrapping	1			
3.7	Pig launchers and receivers	1			
	MODULE IV				
4.1	Types of Pumps and Compressors	1			
4.2	Pumps and Compressors Characteristics	1			
4.3	Single stage pumps	1			
4.4	Multistage pumps	1			
4.5	Single stage Compressors	1			
4.6	Multistage compressors	1			
4.7	Congealing	1			
	MODULE V				

5.1	Pipeline issues: Wax, Scaling and corrosion	1
5.2	Thermal Variations in Pipelines	1
5.3	Challenges in Pipeline Transportation, Corrosion and Integrity Management.	1
5.4	Managing High-Pressure Systems, External Threats and Security Measures.	1
5.5	Future Trends and Innovations in Pipeline Technology: Automation and Remote Monitoring, Advanced Materials and Coatings, Emerging Technologies in Pipeline Transportation.	1
5.6	Automation and SCADA	1

	CO Assessment Sample Questions
1	Explain the terms Solution GOR and API.
2	Explain the terms in the modified Colebrook White equation and describe the significance of the equation in pipeline design.
3	Describe open trench pipe laying method.
4	Distinguish between centrifugal and reciprocating pumps.
5	List and explain any two pipeline issues and methods to mitigate them.

24CHE753	ELECTROCHEMICAL	L	т	Р	J	S	С	Year of Introduction
	ENGINEERING	3	0	0	0	3	3	2024

Preamble: This course introduces to students the basic concepts of electrochemistry. This course will provide knowledge about electrochemical processes, kinetics and various electroanalytical techniques. It also outlines the applications of electrochemical engineering.

Prerec	luisite :	Nil										
Cours	e Outo	omes	: After th	ne com	ipletio	n of tł	ne cou	arse the	e stu	ldent v	vill be a	ble to
CO1	Expla electr	in the ical	e princip	oles of	elect	rochei	mical	proces	sses	and c	oncept	of
	doubl	double laver										
CO2	Descr	Describe the mass transfer phenomena in electrochemical systems.										
CO3	Classify the electro-analytical techniques and outline principles of											
	electr	ochem	nical pro	cess.	-		_					
CO4	Explain the principles of corrosion and basic concepts of battery.											
				С	0 - PO	MAP	PING					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO11	PO12
CO1	3	2										
CO2	3	3										
CO3	3	2					2					
CO4	3	2					2					2
				Ass	sessme	ent Pa	ttern	Ĺ				
				Conti	nuous	Asses	ssmer	nt		End	Somes	or
Bloom's Category			ry	Tools				Examination			01	
				Tes	st1	Tes	st 2	Other tools		2114		011
Remer	nber			~		V	•	~			v	
Under	stand	tand 🖌 🖌 🖌 🗸										
Apply			V V V		V	v						
Analyze								~				
Evalua	ate							~				
Create	;							~				
				Mark	Distri	ibutio	n of (CIA	-			

Course	Attendance	Th	Theory [L- T]			
Structue [L-T-P-J]		Assignment	Test-1	Test-2	Marks	
3-0-0-0	5	15	10	10	40	

	Total Mark distribution				
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration		

100	40	60		3 hours
	End Semester Ex	xamination [ESE]: Patte	rn	
PATTERN	PART A	PART B		ESE Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	2 questions will be from each module, ou which 1 question sho be answered. Each question can have maximum of subdivisions. Each question carrie marks. Marks: (5x8 = 40 mark Time: 3 hours	given ut of ould ach 2 s 8 s 8 ks)	60
	Total Marks: 20	Total Marks: [5x8 = 40 marks]		

MODULE I: Introduction to electrochemistry

Basic electrochemical thermodynamics, free energy, cell emf and Nernst equation, half-cell reactions and redox potentials.

The electrical double layer, its role in electrochemical processes, electro capillary curve, Helmholtz layer, Guoy, Stern layer.

MODULE II: Electrochemical Kinetics

Cell voltage, electrical current, overpotential and exchange current, Butler-Volmer model of electrode kinetics, Tafel plots Mass transfer in electrochemical systems: Diffusion controlled electrochemical reaction, importance of convention and the concept of limiting current, rotating disc electrode.

MODULE III: Electroanalytical techniques

Classification of electrochemical techniques: Potentiometry, Amperometry, voltammetry. Fundamental principles of cyclic voltammetry, Electrochemical Impedance spectroscopy.

MODULE IV: Electrochemical processes

Classification and understanding the principles of electrochemical process: Electro deposition, electro refining, electroforming, electro polishing, anodizing, selective solar coatings.

MODULE V: Electrochemical Engineering: Applications

Batteries: Basic concepts, battery characteristics. Lead acid battery, Lithium Ion battery. Introduction to corrosion: definition, forms of corrosion, factors and control methods of various forms of corrosion.

Text	books					
1. 1	Thomas F. Fuller, John N. Harb - Electrochemical Engineering	ng, 2018,				
7	Wiley					
2. 1	2. D R Crow, Principles and Applications of Electrochemistry-Chapman					
6	and Hall Chemistry Textbook Series, Springer US (1974)					
3.	Corrosion Engineering, Fontana M. G., McGraw-Hill, 2008,	3rd Edition				
	ence dooks Dealwig I.O.M. and Daddy A.K.N. Madam Elastrachemistry N					
1.1	Sockins J.O.M. and Reddy A.K.N, Modern Electrochemistry,	vol.1, vol				
2	Bard A. L. and Faulkner L.R. Electrochemical Methods Fund	lamentals				
۷.	and Applications.	lamentais				
	COURSE CONTENTS AND LECTURE SCHEDULE					
		No. of				
No.		Hours				
	MODULE 1 (6 Hours)					
1.1	Basic electrochemical thermodynamics, free energy	1				
1.2	Cell emf and Nernst equation	1				
1.3	half-cell reactions and redox potentials.	1				
	The electrical double layer, its role in	1				
1.4	electrochemical					
	processes, electro capillary curve					
1.5	The electrical double layer, its role in	1				
1.0						
1.6	Processes, electro capillary curve	1				
1.0	MODILE II (7 hours)	T				
	Cell voltage electrical current overpotential and	1				
2.1	exchange	1				
	current					
2.2	overpotential and exchange current	1				
2.3	Butler-Volmer model of electrode kinetics	1				
2.4	Tafel plots	1				
0 5	Mass transfer in electrochemical systems: Diffusion	1				
2.5	controlled					
	electrochemical reaction.					
2.6	Importance of convention and the concept of limiting current.	1				
2.7	Rotating disc electrode.	1				
	MODULE III (7 hours)					
3.1	Classification of electrochemical techniques:	1				
	Potentiometry,					
	Amperometry, voltammetry.					

3.2	Classification of electrochemical techniques: Potentiometry,	1	
	Amperometry, voltammetry.		
3.3	Classification of electrochemical techniques: Potentiometry,	1	
	Amperometry, voltammetry.		
3.4	Fundamental principles of cyclic voltammetry,	1	
3.5	Fundamental principles of cyclic voltammetry	1	
3.6	Electrochemical Impedance spectroscopy.	1	
3.7	Electrochemical Impedance spectroscopy	1	
	MODULE IV (8 hours)		
4.1	Classification and understanding the principles of electrochemical process: Electro deposition.	1	
4.2	Classification and understanding the principles of electrochemical process: Electro deposition.	1	
4.3	electrorefining, electroforming, electropolishing, anodizing,	1	
4.4	Electropolishing, anodizing	1	
4.5	Electropolishing, anodizing	1	
4.6	Electropolishing, anodizing	1	
4.7	selective solar coatings	1	
4.8	selective solar coatings	1	
	MODULE V (8 hours)		
5.1	Batteries: Basic concepts.	1	
5.2	battery characteristics.	1	
5.3	Lead acid battery.	1	
5.3	Lithium-Ion battery.	1	
5.4	Introduction to corrosion: definition. forms of corrosion,	1	
	factors and control methods of various forms of corrosion	1	
5.5	forms of corrosion.	1	
5.6	factors and control methods of various forms of corrosion	1	
5.7	factors and control methods of various forms of corrosion	1	
5.8	factors and control methods of various forms of corrosion	1	

CO Assessment Sample Questions

1	Derive the Nernst equation and explain about its applications. State faraday' laws.
2	Write a note on electrical double layer (Helmholtz and Stern Model)
3	Explain the treatment methods used for surface cleaning of metals in electroplating
4	With a neat diagram explain lead acid batteries.

24CHE763	Renewable Energy and Environment	L	Т	Р	J	S	С	Year of Introductio n
		3	0	0	0	3	3	2024

Preamble: This course aims at bringing the technological developments in the field of renewable energy resources. Various renewable energy sources such as such as solar, wind, tidal, geothermal, biomass and hydrogen are covered with social and environmental aspects. Students will have insight of renewable energy production from the above mentioned sources and its impact on social and environmental scenarios are discussed. This course will give an ample opportunity to analyze and optimize the performance of renewable energy systems, making them more efficient and cost-effective.

Prerequ	Prerequisite: Nil											
Course	Outco	omes: .	After t	he cor	npleti	on of t	he coi	arse the	e stu	dent w	rill be a	ble to
CO 1	Selec and	Select suitable methods and mechanism to collect solar energy and its storage for different utilities.										
CO 2	Summarize the characteristics of power production from wind energy and its environmental impacts											
CO 3	Expl geotl	ain th nerma	ne me 1 sour	chani ces wi	sm of ith its	f ener social	gy pr and	oductio environ	on fr Imen	om tio tal asp	dal and bects.	1
CO 4	Desc ener	cribe t gy pro	he me ductio	chani on fro	ism of m bio	Èbio a mass.	nd th	ermocl	nemi	cal co	nversio	n for
CO 5	Summarize the policies, future scope, production, storage, transportation and safety aspects of hydrogen energy resources.											
	CO - PO MAPPING											
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO 9	PO1 0	PO11	PO12
CO 1	3	2				2	2					2
CO 2	3	2				2	2					2

CO 3	3	2				2	2				2
CO 4	3	2				2	2				2
CO 5	3	2				2	2				2
Assessment Pattern											
				Conti	nuous	Asses	smer	nt Tools	Fnd	Somost	0 #
Bloc	om's C	atego	ry	Tes	t1	Tes	t 2	Other tools	Examination		on
Remem	ber			~		V	'	~	 ✓ 		
Unders	stand			✓		V	,	~	✓		
Apply				v		V	,	~	v		
Analyse	ć							~			
Evalua	te							~			
Create								~			

Mark Distribution of CIA

Course	Attendance	T	heory [L- T]	Total
Structure [L- T-P-J]		Assignment	Test-1	Test-2	Marks
3-0-0-0	5	15	10	10	40

		Total	Mark distribution			
Total Marks CIA (Marks) ESE (Marks) E					SE Duration	
100	00 40		60		3 Hrs	
End Semester Examination [ESE]: Pattern						
PATTERN		PART A	PART B		ESE Marks	
PATTERN 1	10 Qu quest mark Marks marks	estions, each ion carries 2 s s: (2x10 =20 s)	 2 questions will be from each module, of which 1 question shot answered. Each quican have a maximum subdivisions. Each question carring 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours 	given out of uld be estion n of 2 ies	60	

Total Marks: 20 Total Marks: [5x8 = 40 marks]
--

MODULE I: Principles of Renewable Energy and Solar systems (8 Hours)

Introduction and Structure: Energy conversion chain, Scientific principles of renewable energy, standards and regulations, social implications.

Solar Energy: Basics and Concepts Concentrating and Non-concentrating Solar Collectors, Thermal Energy Storage Systems and Solar Energy Utilization Methods. Photovoltaic (PV) power technology.

MODULE II: Wind Energy (7 Hours)

Wind Energy: Basics and Concepts, Characteristics and Power Generation from Wind Energy. Environmental analysis: Construction, Normal operation, Audible sound, Infrasonic sounds, Disco effect. Shadow impact, Ice throw, Natural scenery, Preservation of bird-life, Further effects on fauna, Space consumption. Offshore wind power utilization, Acceptance. Malfunction, End of operation.

MODULE III: Tidal and Geothermal Energy (7 Hours)

Introduction, Causes of tides, enhancement of tides, tidal-current/stream power, tidal range power, social and environmental aspects. Ocean and thermal energy conversion (OTEC), OTEC principles, Devices, related technologies, social, economic and environmental aspects.

Geophysics, dry rock and hot aquifer analysis, harnessing geothermal resources, ground-source heat pumps, social and environmental aspects.

MODULE IV: Biomass Energy and Conversion (7 Hours)

Biomass, Broad Classifications, Compositions, Characteristics, Properties, Structural Components, Biomass Residues.

Utilization through Conversion Routes: Biochemical and ThermoChemical, Bioconversion into Biogas, Mechanism.

Bioconversion of Substrates into Alcohols, Thermo Chemical Conversion of Biomass, Conversion to Solid, Liquid and Gaseous Fuels-Pyrolysis, Gasification, Combustion, Chemical Conversion Processes.

MODULE V: Hydrogen Energy Technology (7 Hours)

Need for Hydrogen Energy: Global energy picture, Present and Projected Uses for Hydrogen, Prospects, Prognosis and Future for Hydrogen energy, challenges.

Production of Hydrogen: from Fossil fuels, synthetic fuels. Electrolysis of water, Electrolyzers. Using Solar energy: Photochemical, Photo-catalytic, the water oxidation in nature. Fuel cell systems, basic principles and classification; proton exchange membrane fuel cell, fuel cell poisoning. Reversible and irreversible losses, efficiency of FC. application of fuel cells to automotive sectors. Case study/project.

Distribution and Bulk Storage of Gaseous, Dewars for transport applications Gas Cylinders, Pipelines, Large-scale Storage. Safety regulations: Codes and Standards

-Physiological, physical and chemical hazards of hydrogen, Safety of hydrogen storage facilities.

Text books

- 1. Twidell, J. and Tony W., Renewable Energy Resources, 2nd Edition, Taylor & Francis 2006.
- 2. Khan B. H., Non-Conventional Energy Resources, 2nd Edition, Tata McGraw-Hill Education Pvt. Ltd. 2009.
- 3. Prabir Basu, Biomass Gasification, Pyrolysis and Torrefaction, Academic Press, Elsevier, 2013.
- 4. Angelo Basile, Adolfo Iulianelli (Editors), Advances in hydrogen production, storage and distribution, ISBN 978-0-85709-768-2, 2014 Elsevier Ltd.
- 5. Broom, Darren P, Hydrogen Storage Materials: The Characterisation of Their

Storage Properties, 2011, ISBN 978-0-85729-221-6, Springer.

6. Arno A. Evers, 2010. The Hydrogen Society. Hydrogeit Verlag. ISBN 978-3-937863-31-3.

Reference books

- 1. Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese, Renewable Energy- Technology, Economics and Environment, Springer, 2007.
- 2. Sukhatme S. P., Nayak J. K., Solar Energy: Principles of thermal Collection and Storage, 3rd Ed., Tata McGraw-Hill Education Pvt. Ltd 2008.
- 3. Fotis Rigas and Paul Amyotte, Hydrogen Safety, CRC Press, ISBN 978-1-4398-6231-5.

	COURSE CONTENTS AND LECTURE SCHEDULE	
No.		No. of Hours
	MODULE 1	
1.1	Introduction and Structure: Energy conversion chain	1

1.2	Scientific principles of renewable energy, standards and regulations, social implications.	1
1.3	Solar Energy: Basics and Concepts	1
1.4	Concentrating Solar Collectors	1
1.5	Non-concentrating Solar Collectors	1
1.6	Thermal Energy Storage Systems	1
1.7	Solar Energy Utilization Methods	1
1.8	Photovoltaic (PV) power technology.	1
	MODULE II	
2.1	Wind Energy: Basics and Concepts	1
2.2	Characteristics	1
2.3	Power Generation from Wind Energy	1
2.4	Environmental analysis: Construction, Normal operation, Audible sound, Infrasonic sounds, Disco effect.	1
2.5	Shadow impact, Ice throw, Natural scenery, Preservation of bird-life, Further effects on fauna, Space consumption.	1
2.6	Offshore wind power utilization, Acceptance.	1
2.7	Malfunction, End of operation.	1
	MODULE III	
3.1	Introduction, Causes of tides, enhancement of tides	1
3.2	tidal-current/stream power, tidal range power, social and environmental aspects	1
3.3	Ocean and thermal energy conversion (OTEC), OTEC principles, Devices	1
3.4	related technologies, social, economic and environmental aspects	1

3.5	Geophysics, dry rock and hot aquifer analysis	1
3.6	harnessing geothermal resources, ground-source heat pumps	1
3.7	Social and environmental aspects.	1
	MODULE IV	
4.1	Biomass, Broad Classifications, Compositions, Characteristics,Properties, Structural Components, Biomass Residues.	1
4.2	Utilization through Conversion Routes: Biochemical conversion, Thermo Chemical conversion.	1
4.3	Bioconversion into Biogas: Mechanism,	1
4.4	Bioconversion of Substrates into Alcohols	1

4.5	Thermo Chemical Conversion of Biomass	1
4.6	Conversion to Solid, Liquid and Gaseous Fuels: Pyrolysis, Gasification	1
4.7	Combustion: Chemical Conversion Processes	1
	MODULE V	
5.1	Need for Hydrogen Energy: Global energy picture, Present and Projected Uses for Hydrogen, Prospects, Prognosis and Future for Hydrogen energy, challenges.	1
5.2	Production of Hydrogen: from Fossil fuels, synthetic fuels.Electrolysis of water, Electrolyzers.	1
5.3	Using Solar energy: Water Splitting with SolarEnergy, Photovoltaic Cells, Solar ThermalProcess, Photo-electrochemical Cells	1
5.4	Fuel cell systems, basic principles and classification; proton exchange membrane fuel cell, fuel cell poisoning.	1
5.5	Reversible and irreversible losses, efficiency of FC. Application of fuel cells to automotive sectors. Case study/project.	1
5.6	Distribution and Bulk Storage of Gaseous, Dewars for transport applications Gas Cylinders, Pipelines, Large- scale Storage.	1
5.7	Safety regulations. Codes and Standards - Physiological, physical and chemical hazards of hydrogen, Safety of hydrogen storage facilities.	1

CO Assessment Sample Questions

	A V
1	Describe the working of non-concentrating solar collector for energy
	recovery
2	Describe the factors affecting the power generation from wind turbines.
3	If both tidal-current and tidal-range power plant are connected into a utility electricity network, is the joint power more or less variable? Explain.
4	Write the mechanism of biogas production with necessary reaction steps.

	Explain single stage and two stage anaerobic digestion systems.
5	With a neat sketch, explain the working principle of a proton exchange membrane fuel cell for hydrogen energy. Describe the operational challenges in PEM fuel cells.

040UF772	Minerals & Metal Processing	L	Т	Р	J	S	С	Year of Introduction
24CHE773	Industries	3	0	0	0	3	3	2024

Preamble: The course on Mineral and Metal Processing Industries is designed to provide students with a comprehensive understanding of the fundamental principles and advanced technologies employed in the extraction and processing of minerals and metals, covering a broad spectrum of topics; the course covers the definition and scope of mineral processing, separation techniques, hydrometallurgical processes, mineral properties, environmental aspects and innovations in mineral processing technology

to

and

aspects	s, and innovations in inneral processing technology.
Prerequ	lisite: Nil
Course	Outcomes: After the completion of the course the student will be able to
CO 1	Explain the role of mineral processing in the chemical engineering industry, and describe the properties of minerals.
CO 2	Identify and explain separation techniques relevant to Mineral a Metal Processing Industries.
CO 3	Explain the Hydrometallurgical Processes and their application in mineral and metal processing industries.
CO 4	Apply knowledge of sustainable mining practices, water management and energy efficiency in mineral and metal processing; explore green technologies, eco-friendly processing methods.
CO 5	Explain the innovations in tailings management, recognizing opportunities and challenges in adopting sustainable approaches.
	CO - PO MAPPING

					- 00		M I III					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO1 0	PO11	PO12
CO 1	1					2	2	2				3
CO 2	3	2		1								3
CO 3	2	2		2								3
CO 4	2					2	1	1				3
CO 5	2					3	1	1				3

	Asses	sment Pat	tern	
	Continuou	s Assessm	ent Tools	End Somestor
Bloom's Category	Test1 Test 2 Other tools		Other tools	Examination
Remember	v	~	/	v
Understand	 ✓ 	v	/	v
Apply	✓	v	/	v
Analyse			v	
Evaluate			v	
Create			v	

	Mark	Distribution	of CIA		
Course Structure		Th	eory [L- T]		Total
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Mark s
3-0-0-0	5	15	10	10	40

		Total	Mark distribution		
Total Ma 100	irks	CIA (Marks) 40	ESE (Marks) 60	I	ESE Duration 3 hrs
End Semest	er Exa	DADE A			
PATTERN		PARTA	PARTB		ESE Marks
PATTERN 1	10 Qu quest marks Marks marks	Marks: 20	 2 questions will be a from each module, or which 1 question shou answered. Each quest can have a maximum subdivisions. Each question carrie 8 marks. Marks: (5x8 = 40 marks: Time: 3 hours Total Marks: [5x8 = 40 	given ut of ld be stion of 2 es s)	60
	Total	wiai Ko, 20	marks]		

MODULE I: Overview of Mineral Processing

Overview of mineral and metal Processing: Definition and scope of mineral processing and metal processing, Role of mineral and metal processing in the chemical engineering industry, Definition of Mineral, crystalline and amorphous states, Properties depending upon light: Opalescence, Fluorescence. Ore Types and Characteristics, Classification of ores, Physical and chemical properties of ores, Principles of crushing and grinding Types of crushers and mills.

MODULE II: Separation techniques

Separation techniques: Gravity Concentration- Principles of gravity concentration, Types of gravity concentrators: Jigging, shaking tables. Magnetic Separation- Principles of magnetic separation, Magnetic and electrical separation techniques, Froth Flotation- Principles of flotation, Flotation reagents and their classification, Types of flotation cells. Introduction to ore sorting techniques. Benefits and applications of ore sorting in processing.

MODULE III: Hydrometallurgical Processes and Mineral properties

Leaching and Extraction Processes-Principles of leaching, Extraction methods: solvent extraction, ion exchange, Precipitation and Cementation- Principles of precipitation, Cementation processes, Mineral properties- Properties depending upon cohesion and elasticity: Hardness and Tenacity. Properties depending upon electricity: thermoelectricity, Pyroelectricity and Piezoelectricity. Properties depending upon Heat and Magnetism: Fusibility, Thermal conductivity, Specific heat, Para and Diamagnetism.

MODULE IV: Environmental Aspects

Sustainable Mining Practices-Overview of sustainable mining principles, Best practices for minimizing environmental impact, Case studies on successful implementation of sustainable mining practices. Energy Efficiency in Mineral Processing, Energy consumption in various mineral processing stages, Innovative technologies for energy-efficient processing, Economic and environmental benefits of energy conservation.

MODULE V: Innovations in Mineral Processing Technology

Green Technologies and Eco-Friendly Practices- Exploration of environmentally friendly processing methods, Green reagents and sustainable chemical processes, Tailings Management and Reprocessing-Innovations in tailings storage and disposal, Opportunities and challenges in tailings reprocessing, Sustainable approaches to minimize environmental impact.

Text books

- 1. H.H. Read Rutley's Elements of Mineralogy
- 2. M.H.Battey Mineralogy For students
- 3. E.S.Dana & W.E.Ford A Text Book of Mineralogy
- 4. C.S.Hurlbut Dana's Manual of Mineralogy.
- 5. William E. Ford Dana's Textbook of Mineralogy
- 6. Pramod O Alexander A Hand Book of Minerals, Crystals, Rocks and Ores
- 7. C. Hammond, The Basics of Crystallography and Diffraction, Oxford University Press, 200

8. Dutrizac, J. E. (2009). Extractive Metallurgy of Copper. Elsevier.

Reference books

- 1. Wills, B. A., & Finch, J. (2015). Wills' Mineral Processing Technology. Butterworth-Heinemann.
- 2. Fuerstenau, M. C., & Han, K. N. (2003). Principles of Mineral Processing. SME.
- 3. Taggart, A. F. (1945). Handbook of Mineral Dressing. Wiley.
- 4. Marsden, J. O., & House, C. I. (2009). The Chemistry of Gold Extraction. SME.
- 5. Schlesinger, M. E. (2011). Extractive Metallurgy of Copper. Elsevier.
- 6. Chryssoulis, S. L., & McMullen, J. (2016). Advances in Gold Ore Processing. Elsevier.
- 7. Wills, B. A., & Napier-Munn, T. (2006). Mineral Processing Technology. Elsevier.
- 8. King, R. P. (2002). Modeling and Simulation of Mineral Processing Systems. Butterworth-Heinemann.

	COURSE CONTENTS AND LECTURE SCHEDULE	
No.		No. of Hours
	MODULE 1 (7 hours)	
1.1	Overview of mineral and metal processing: Definition and	1
	scope of mineral and metal processing.	
1.2	Role of mineral and metal processing in the chemical	1
	engineering industry.	
1.3	Definition of Mineral, crystalline and amorphous states,	1
	Properties depending upon light: Opalescence, Fluorescence.	
1.4	Definition of Mineral, crystalline and amorphous states,	1
	Properties depending upon light: Opalescence,	
	Fluorescence.	

1.5	Ore Types and Characteristics, Classification of ores, Physical	1
	and chemical properties of ores.	
1.6	Principles of crushing and grinding -Types of crushers and mills.	1
1.7	Principles of crushing and grinding -Types of crushers and mills.	1
	MODULE II (7 hours)	
2.1	Separation techniques: Gravity Concentration- Principles of gravity concentration.	1
2.2	Types of gravity concentrators: Jigging, shaking tables.	1
2.3	Magnetic Separation- Principles of magnetic separation.	1
2.4	Magnetic and electrical separation techniques.	1
2.5	Froth Flotation- Principles of flotation, Flotation reagents and their classification.	1
2.6	Types of flotation cells. Introduction to ore sorting techniques.	1
2.7	Benefits and applications of ore sorting in processing.	1
	MODULE III (8 hours)	
3.1	Leaching and Extraction Processes-Principles of leaching.	1
3.2	Extraction methods: solvent extraction, ion exchange.	1
3.3	Precipitation and Cementation- Principles of precipitation, Cementation processes.	1
3.4	Mineral properties- Properties depending upon cohesion and elasticity: Hardness and Tenacity.	1
3.5	Properties depending upon electricity thermoelectricity, Pyroelectricity and Piezoelectricity	1
3.6	Properties depending upon electricity: thermoelectricity, Pyro electricity and Piezoelectricity.	1

3.7	Properties depending upon Heat and Magnetism: Thermal conductivity, Specific heat, Para and Diamagnetism.	1
3.8	Properties depending upon Heat and Magnetism: Thermal conductivity, Specific heat, Para and Diamagnetism.	1

	MODULE IV (7 hours)	
4.1	Sustainable Mining Practices-Overview of sustainable mining principles.	1
4.2	Best practices for minimizing environmental impact.	1
4.3	Best practices for minimizing environmental impact.	1
4.4	Case studies on successful implementation of sustainable mining practices.	1
4.5	Case studies on successful implementation of sustainable mining practices.	1
4.6	Energy Efficiency in Mineral Processing, Energy consumption in various mineral processing stages.	1
4.7	Innovative technologies for energy-efficient processing, Economic and environmental benefits of energy conservation.	1
	MODULE V (7 hours)	
5.1	Green Technologies and Eco-Friendly Practices- Exploration of environmentally friendly processing methods.	1
5.2	Green Technologies and Eco-Friendly Practices- Exploration of environmentally friendly processing methods.	1
5.3	Green reagents and sustainable chemical processes.	1
5.4	Green reagents and sustainable chemical processes.	1
5.5	Tailings Management and Reprocessing-Innovations in tailings storage and disposal.	1
5.6	Opportunities and challenges in tailings reprocessing.	1
5.7	Sustainable approaches to minimize environmental impact.	1

	CO Assessment Sample Questions
1	How would you apply the principles of mineral processing to optimize the extraction of a specific mineral, considering its properties and industrial applications?
2	A mining operation needs to process a heterogeneous ore with varying particle sizes. Describe how gravity concentration, froth flotation, and ore sorting can be combined to achieve efficient separation. Provide specific examples of equipment and processes.
3	An ore contains a valuable metal that is challenging to extract using traditional methods. Explain how you would apply hydrometallurgical processes, such as leaching and extraction

methods, to maximize metal recovery while minimizing environmental impact.
--

4	A mineral processing company aims to reduce its environmental footprint.
	Propose a comprehensive plan that incorporates energy conservation.
5	A mining industry is exploring options for tailings management to enhance both safety and sustainability. Recommend innovative technologies or practices for tailings disposal and reprocessing, highlighting the advantages and potential challenges associated with each

24CHE783	FOOD TECHNOLOGY	L	Ί	Р	J	S	С	Year of Introduction
	1002 1201102001	3	0	0	0	3	3	2024

Preamble: Food processing is a crucial aspect of the food industry, involving various unit operations and preservation techniques. This course provides a comprehensive understanding of global and Indian food scenarios, focusing on key players, trends, and techniques for different food sources. It also explores the application of these techniques in real-world, highlighting the importance of quality control and assurance in food processing. The course also covers the application of modern equipment and technology in the food industry, ensuring students gain a comprehensive skill set for diverse roles within the dynamic field.

-														
Prerequisite: Nil														
Course Outcomes: After the completion of the course the student will be able to														
CO 1	Explain the importance of food quality, nutritive aspects, food additives and standards.													
CO 2	Describe	Describe the various food processing and packing methods.												
CO 3	Select su	itable	e food	l pre	serva	tion 1	tech	niques	5.	0				
CO 4	Explain t meat, po	the p ultry	rodu and	ction fish	n and indu	l utili Istrie	zati s.	on of f	ood	products	s from di	ary,		
CO 5	Describe	treat	ment	t and	l disp	osal	of fo	od pro	cess	ing waste	es.			
CO - PO MAPPING														
CO	PO1	PO	PO3	PO	PO5	PO6	PO	PO8	PO	PO10	PO11	PO12		
		2		4			7		9					
CO 1	3	2				2	1							
CO 2	3	2				2	1							
CO 3	3	2				2	1							
CO 4	3	2				2	1							
CO 5	3	2				2	1							
Assessment Pattern														
D1 .				Con	tinuo	ous Asses	ssm	ent						
Bloom's Category						Tools	5		En	a semes	ter Exam	ination		
				Tes	st1	Test	2	Other tools						
RememberVVV														

Understand	✓	v	~	✓
Apply	✓	v	~	 ✓
Analyse			~	
Evaluate			~	
Create			~	

Mark Distribution of CIA

Course	Attendance	Tł	Total			
Structur e [L-T-P- J]		Assignment	Test-1	Test-2	Mark s	
3-0-0-0	5	15	10	10	40	

		Total	Mark distribution	
Total Ma	rks	CIA (Marks)	ESE (Marks)	ESE Duration
100		40	60	3 hr
End Semest	er Exa	mination [ESE]:	Pattern	
PATTERN		PART A	PART B	ESE Marks
PATTERN 1	10 Qu quest mark Marks marks	testions, each ion carries 2 s s: (2x10 =20 s)	 2 questions will be give from each module, out of which 1 question should be answered. Each question can have a maximum of sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) 	n of oe n 2 60
	Total			
		e	VILABUS	
	~ ~	3		
deterioratio	: Ger n	neral aspects, fo	ood constituents, food addi	tives and food
General asp	ects c	of food industr	y, World and Indian foo	d needs, Various

food constituents and additives, Food deteriorative factors and their control.

MODULE II : Food processing

Preliminary processing methods. Unit operations in Food Processing. Food conversion techniques and equipment used. Food quality control, safety and regulations. and nutritive aspects.

MODULE III : Food preservation and packing techniques

Preservation by heat and cold dehydration-freezing and refrigeration, Irradiation and microwave heating, concentration, frying, sterilization and pasteurization, emerging non thermal methods of food preservation, chemicals, fermentation and pickling, hurdle technology, food canning technology-heat sterilization of canned food, canning procedures for fruits, vegetables, meats, poultry and marine products; Separation processes in food processing; food packaging, product shelf-life.

MODULE IV : Cereals, pulses, vegetables, fats and oils

Production and processing of cereals, pulses, Production and processing of vegetables, spices fats and oils

MODULE V : Food Industries and safe disposal of wastes

Food industries - Dairy products, meat, poultry and fish products, Beverage Industry- Soft and Alcoholic. Treatment and disposal of food processing wastes

Text books

- 1. B.Sivasankar, Food Processing and Preservation, PHI Learning Pvt. Ltd.
- Badger, W.L, Banchero, J.T., Introduction to Chemical Engineering, McGraw Hill.
- Food Industry Wastes: Disposal and Recovery; Herzka A & Booth RG; 1981, Applied Science Pub Ltd.
- 4. Hall C.W, Farall A.W & Rippen A.L, Encyclopedia of Food Engineering, Van Nostrand, Reinhold, New York.

Refer	ence books								
5. I	5. Heid J.L & Joslyn M.A, Fundamentals of Food Processing								
(Operations, AVI Pub.								
6. T	Jnit Operations of Chemical Engineering: McCabe, Smith & I	Harriot,							
]	MH, 5th edition.								
7. V	7. Sathe, A First Course in Food Analysis, New Age Internatio	onal							
ł	Pvt. Ltd. 1999.								
8. V	Waston E.L., Elements of Food Engineering, Van Nostrand,								
I	Reinhold, New York.								
	COURSE CONTENTS AND LECTURE SCHEDULE								
No.		No. of							
		Hours							
	MODULE 1								
1.1	Introduction, general aspects, World and Indian food needs	1							
1.2	Classes of nutrients: Carbohydrates, Fats	1							
1.3	Classes of nutrients: Proteins Minerals	1							
1.4	Classes of nutrients: Vitamins, Water	1							
1.5	Additives: Preservatives, Nutritional additives, Flavouring agents, Colouring agents, Texturizing agents, Miscellaneous additives	1							
1.6	Food deteriorative factors and their control	1							
	MODULE II								
2.1	Preliminary processing methods: cleaning, sorting and grading methods	1							
2.2	Unit operations in Food Processing.	1							
2.3	Food conversion techniques and equipment used: size 1								
2.4	Food conversion techniques and equipmentused: Emulsification, filtration.	1							
2.5	Food conversion techniques and equipment used:	1							

2.5	membrane separation, centrifugation.	1
2.6	Food conversion techniques and equipment used: extraction and crystallisation.	1
2.7	Food quality control and nutritive aspects: sensory evaluation of food quality and regulation, quality factors for consumer safety.	1

	MODILE								
3.1	Introduction to thermal destruction kineticsof microorganisms.	1							
3.2	Thermal process time for sterilisation, heat sterilization of canned food, factors affecting thermal process time.	1							
3.3	Hot and cold preservation techniques:Sterilization, pasteurization and blanching	1							
3.4	Chemicals, fermentation and pickling, hurdle technology	1							
3.5	Food canning technology- canning procedures for fruits,	1							
3.6	Food canning technology- vegetables, meats, poultry and marine products	1							
3.7	Separation processes in food processing; Packing methods.	1							
	MODULE IV								
4.1	Production and processing of rice, manufacture of parched rice, puffed rice and flaked rice.	1							
4.2	Production and processing of wheat, manufacture of bread.	1							
4.3	Pulse processing: methods to improve nutritive aspects of pulses	1							
4.4	Production of fats and oils: rendering, pressing, solvent extraction.	1							
4.5	Refining of edible oil, hydrogenation and interesterification.	1							
4.6	Harvesting and processing of vegetables.	1							
4.7	Harvesting and processing of spices.	1							
	MODULE V								
5.1	Dairy industry: milk processing, dairy products: manufacture of butter	1							
5.2	Dairy products: manufacture of Cheese, ice cream	1							
5.3	Meat, poultry and fish products	1							
5.4	Preservation techniques for meat, poultry and fish products	1							
5.5	Beverage Industry- Soft drinks, their classification	1							

5.6	Alcoholic beverages: malted beverage, manufacture of beer, manufacture of fermented beverages: wine and cider	1
5.7	Manufacture of distilled beverages: Brandy	1
5.8	Treatment and disposal of food processing wastes	1

	CO Assessment Questions									
1	Enumerate and explain food nutrients.									
2	Explain the wet cleaning methods in the food industry.									
3	List out and explain the different factors that influence the thermal destruction kinetics of the microorganisms in the heat treatment of food materials.									
4	With a neat flow sheet explain the steps involved in milk processing.									
5	Describe the safe disposal of wastes from a food industry.									

24CH	E793	DRU	JGS AI						Т	Р	J	S	С	Yea Introd	ar of uction
	PHARMACEUTICALS TECHNOLOGY					3	0	0	0	3	3	20	24		
Preat and prefo and the d	Preamble: This course focuses on understanding the development of drugs and therapeutic agents. This includes various unit processes, preformulation, formulation techniques for conventional drug development and sterilization techniques. The course helps the student to understand the different dosage forms, purity and effectiveness of the drugs developed.														
Prere	Prerequisite: Nil														
Cour	Course Outcomes: After the completion of the course the student will be able to														
CO1	CO1 Explain principles of preformulation and basic formulation considerations for monophasic liquid orals and emulsions suspensions, and aerosols.														
CO2	Desc in th	ribe p le man	oreform ufact	mulati uring	ion, of ta	formul blets.	ation	an	d u	ınit	op	era	tic	on invo	olved
CO3	Expla	ain dos	sage f	orms,	princ	iples a	nd qu	ality	CO	ntro	ol.				-
CO4	Desc used man	ribe fo for fill ufactu	ormul ling h ring,	ations ard ge evalua	for l elatin ation	hard a capsu of caps	nd so les, p sules.	ft ge roce	elat ss	in c for s	ap sof	sul t ge	es ela	, mach tin cap	inery sules
CO5	Describe preformulation, formulation, evaluation and large-scale manufacturing, packaging of oral controlled release and sustained release products.														
					CO	- PO M.	APPIN	G		1	-				
CO	PO1	PO2	PO3	PO4	PO5	5 PO6	PO7	P	28	PC	99	PO	10	PO11	PO12
COI	3	2									_				
CO2	3	2								_	_				
CO3	3	2									_				
CO4	3	2									_				
C05	3	2			<u> </u>		Datta								
				Court	Asse	ssment	Patte	rn Tee	1						
Dlo	om'a (² atora	~ 7	Conti	nuou	s Asses	smen		IS	_		En	d S	Semeste	er
DIU	omst	alegoi	y	les	τı	les	τ2	toc	ols			Е۶	an	ninatio	n
Reme	mber			v		V	/	V	/				(/	
Unde	erstan	d		v		V	/	V	/					~	
Apply	y			~		V	/	V	/					~	
Analy	vse							V	/						
Evaluate								V	/						
Create								V	/						
				Μ	ark D	Distribu	tion o	f CIA	1						
Course Structure						Th	eory	[L-	T]				То	otal	
[L-T-P-J]			Att	endan	.ce	Assignment			Test-1 Test-2			2	Mark		

3-0-0-0		5	15 10		10		40				
Total Mark distribution											
Total Ma	rks	CIA (Marks)	ESE (M	arks)	ES	E Du	ration				
100		40	60	3 hou	urs						
End Semester	Exami	nation [ESE]: Pat	tern								
PATTERN		PART A	PA	RT B		ESE	Marks				
PATTERN 1	10 Qu quest mark Mark mark	uestions, each ion carries 2 s s: (2x10 =20 s)	 2 questions from each m which 1 quest answered. H can have a n sub divisions Each quest 8 man Marks: (5x8 = Time: 3 hour 	given ut of ald be estion a of 2 ies		60					
	Total	Marks: 20	Total Marks: marks]								

MODULE I: Introduction to pharmaceutical industry

Pharmaceutical Industry, Drug discovery and Development of Drugs, Organic Therapeutic agents uses and Economics. Chemical Conversion Processes (Restricted to brief explanation for assessment)- Alkylation, Carboxylation, Condensation, Cyclisation, Dehydration, Esterification, Halogenation Oxidation, Sulfonation, Complex Chemical Conversions and Fermentation.

Preparation, properties, uses and testing of the following pharmaceuticals and fine chemicals, sulfacetamide, paracetamol, methyl orange, riboflavin, nicotinamide, procaine hydrochloride, para-amino salicylic acid, isonicotinic acid hydrazide, aspirin, penicillin, calcium gluconate, ferric ammonium citrate (preparation study of

all the listed polymers are required).

MODULE II: Tablets and Capsules

Compressed Tablets, Wet Granulation, Dry Granulation or Slugging, Direct Compression, Tablet Presses, Formulation, Introduction to tablet coating: rationale, advantages etc. Preformulation considerations for tablet coating, Types of coating, Quality control of coated and uncoated tablets, Introduction to capsule dosage form: rationale, advantages. Preformulation considerations for capsule dosage form. Hard gelatin capsules: formulation considerations, capsule manufacture equipments, quality control tests, packaging, Soft gelatin capsules: formulation considerations, capsule filling equipments, quality control tests, packaging.

MODULE III: Monophasics, Biphasic and Emulsions

Monophasics (Oral and Topicals) (solution, syrups, elixirs, linctus, nasal drops, ear

drops, etc.), preformulation, Formulation, Quality Control. Biphasic – Suspensions, preformulation, Principles and Stabilization techniques, Formulation Development,

Evaluation, Large scale manufacture and packaging with focus on equipment. Biphasic – Emulsions, preformulation, theories of emulsions, formulation, Evaluation including stress testing, Large scale manufacture and packaging with focus one equipment Parenteral preparations: large volume and small volume parenterals, Standard of Hygiene and Good Manufacturing Practice (GMP), Packing

techniques and quality control.

MODULE IV: Ointments, Creams, Gels and Aerosols

Ointments- Preformulation, Formulation, Evaluation, Large scale manufacture and packaging with focus on equipment.

Creams & Gels- Preformulation, Formulation, Evaluation, Large scale manufacture and packaging with focus on equipment.

Aerosols- Containers and Propellants, Formulation of aerosols, Evaluation of aerosols Oral sustained release and controlled release formulations, Preformulation, Formulation of matrix and reservoir type systems, Drug targeting: concepts, liposomes, nanoparticles, niosomes.

MODULE V: Sterilization and Analytical Methods

Sterilization: Introduction, risk factor, methods of sterilization, heat (dry and moist), heating with bactericide, filtration, gaseous sterilization and radiation sterilization, suitable example to be discussed and sterilization various testing. Analytical Methods and Tests for Drugs & Pharmaceuticals- principle, instrumentation and applications of UV/VIS and IR spectroscopy, X-ray diffraction analysis, Fourier transform spectroscopy, chromatography principle and its types, fluorimetry, polarimetry.

Text books

- 1. Shayne Cox Gad. Pharmaceutical Manufacturing Handbook, Published by John Wiley and Sons, Inc., 2008.
- 2. Bernd Meibohm. Pharmacokinetics and Pharmacodynamics of biotech drugs, Published by Wiley-VCH, 2006.
- 3. Rawlines, E.A.; "Bentleys Text book of Pharmaceutics ", III Edition, Bailliere

Tindall, London, 1977.

Reference books

- 1. Remington-The Science and Practice of Pharmacy (Vol.1& 2).
- 2. Pharmaceutical Production Facilities: Design & Applications, Graham C. Cole,1st Edition, 1990, Ellis Horwood.
- 3. Theory & Practice of Industrial Pharmacy, Leon Lachman, Herbert A. Lieberman & Joseph Kanig, 3rdedition, 1987, Lea & Febiger, Philadelphia.
- 4. ICH Guidelines 7 Coated Pharmaceutical Dosage Forms, K. H. Bauer, CRC Press, Boca Raton. Med Pharm.
- 5. Pharmaceutical Coating Technology, G. C. Cole, New York, Ellis, Horwood, 1990.
- 6. Pulsed and Self-Regulated Drug Delivery, J. Kost, Florida, CRC Press, 1987.
- 7. Extended Release Dosage Forms, KlowCzynski, Florida, CRC Press, 1987
- 8. Hard Capsules: Development and Technology, K. Ridgway, London Pharmaceutical Press 1987.
- 9. Process Systems Engineering for Pharmaceutical Manufacturing Volume 41,

Edited by Ravendra Singh, Zhihong Yuan Tsinghua, Elsevier, 2018.

=	_	-	_		
10.Pharmaceutical	Suspensions	from	Formulation	n Developmer	nt to
Manufacturing, 1	Edited by Alok	K. Ku	lshreshtha,	Onkar N. Sing	h, G.
Michael Wall, Sp	ringer, 2010.				

	COURSE CONTENTS AND LECTURE SCHEDULE							
		No. of						
No.		Hours						
	MODULE 1 (6 hours)							
1 1	Pharmaceutical Industry, Drug discovery and	1						
1.1	Development of							
	Drugs, Organic Therapeutic agents uses and Economics.							
1.0	Chemical Conversion Processes - Alkylation,	1						
1.2	Carboxylation,							
	Condensation, Cyclisation, Dehydration.							
1.0	Esterification, Halogenation Oxidation, Sulfonation,	1						
1.3	Complex							
	Chemical Conversions and Fermentation.							

1.4	Outlines of preparation, properties, uses and testing of the	1
	following pharmaceuticals and fine chemicals,	
	sulfacetamide, paracetamol, methyl orange, riboflavin,	
	Outlines of preparation, properties, uses and testing of	1
1 5	the	
1.5	following pharmaceuticals and fine chemicals, procaine	
	hydrochloride, para-amino salicylic acid, isonicotinic	
	Outlines of preparation, properties, uses and testing	1
1.6	of the	
	following pharmaceuticals and fine aspirin, penicillin,	
	calcium gluconate, ferric ammonium citrate.	
	MODULE II (8 HOUIS)	1
2.1	Compressed Tablets: Formulation.	T
2.2	Wet Granulation, Dry Granulation or Slugging, Direct Compression.	1
2.3	Tablet Presses, processing problems.	1
2.4	Introduction to tablet coating: rationale, advantages	1
2.1	coating.	
2.5	Quality control of coated and uncoated tablets.	1
	Introduction to cansule dosage form. Hard gelatin	1
2.6	capsules:	T
2.0	formulation considerations, capsule manufacture	
	equipments, quality control tests, packaging.	
2.7	Soft gelatin capsules: formulation considerations,	1
	filling equipments, quality control tests, packaging	
		1
2.8	Microencapsulation, Fabrication techniques, Evaluation.	

	MODULE III (9 hours)								
3.1	Monophasic liquids: Oral and Topicals (solution, syrups, elixirs, linctus, nasal drops, ear drops, etc.), Formulation, Quality Control.	1							
3.2	Biphasic - Suspensions Preformulation Principles and Stabilization techniques Formulation Development.	1							

3.3	Biphasic - Emulsions Preformulation Theories of emulsions	1
	Formulation.	
3.4	Evaluation including stress testing Large-scale manufacture	1
	and packaging with focus on equipment.	
3.5	Parenteral preparations: large volume and small volume parenterals.	1
3.6	Formulation of small and large volume parenterals.	1
3.7	Standard of Hygiene and Good Manufacturing Practice (GMP).	1
3.8	Packing techniques.	1
3.9	Quality control.	1
	MODULE IV (7 hours)	
4.1	Ointments Preformulation Formulation Evaluation Large scale	1
	manufacture and packaging with focus on equipment.	
4.0	Creams Preformulation Formulation Evaluation Large scale	1
4.2	manufacture and packaging with focus on equipment, Gels • Preformulation Formulation Evaluation Large scale manufacture and packaging with focus on	
	equipment.	
4.3	Suppositories Preformulation Formulation Evaluation Large	1
	scale manufacturing with focus on equipment.	1
4.4	Aerosols Containers and Propellants.	L
4.5	Formulation of aerosols Evaluation of aerosols.	1
4.6	Oral sustained release and controlled release formulations •	1
1.0	Preformulation Formulation of matrix and reservoir type systems.	
4.7	Drug targeting: concepts, liposomes, nanoparticles,	1
	MODULE V (5 hours)	
	Sterilization: Introduction, risk factor, methods of	1
5.1	sterilization,	-

heat (dry and moist).	

5.2	Heating with bactericide, filtration, gaseous sterilization and radiation sterilization, suitable example to be discussed and sterilization testing.	1
5.3	Analytical Methods and Tests for various Drugs & Pharmaceuticals- principle, instrumentation and applications of UV/VIS and IR spectroscopy.	1
5.4	X-ray diffraction analysis, Fourier transform spectroscopy.	1
5.5	Chromatography principle and its types, fluorimetry, polarimetry.	1

	CO Assessment Sample Questions
	 Explain the methods of filling of aerosol and the evaluation of aerosol
1	system.
	2. Explain the significance of preformulation studies in
	manufacture of suspensions.
	3. Explain theories of emulsification.
	1. List out the steps involved for tablet compression.
0	2. Classify the different types of tablets. Give an account of
4	tablet compaction by rotary compression process.
	 Explain processing problems encountered in compression of tablets.
	1. Explain various enteric and non-enteric polymers used for
	tablet coating.
3	2. Explain the steps involved in sugar coating.
	3. Explain the significance of microencapsulation and discuss
	any one microencapsulation technique.
	1. Describe the manufacture of soft gelatin capsule by Rotary die
4	process.
	2. Discuss about the quality control test for hard gelatin capsules.
	3. Explain the limitation for using hard gelatin capsules.
	1. Explain the approaches involved in design of controlled
5	release formulations.
5	2. Explain the concepts of drug targeting.
	3. Describe the manufacture of liposomes.

SEVENTH SEMESTER OPEN ELECTIVE-1 / INDUSTRIAL ELECTIVE

24CHI714 Process Safet		ty and Hazard Assessment				L	Т	Ρ	J	S C) In	Yea trodu	r of uction			
27011	.,								0	0	0	33		202	24	
Pream	ble: I	n the	realm c	f chem	ical pr	ocesses	s, ensu	ıring	sa	fety	is	paran	noui	nt. Th	ie	
subje	ct Pro	ocess	safety	and ha	azard a	assessi	ment a	aims	s to	equ	iip	stuc	lent	s wit	h the	
know	ledge	and	practic	al skil	ls nec	essary	to for	ster	a c	cultu	ire	e of sa	afet	y wit	hin a	
chem	ical pi	ocess	plant.													
Prereq	luisite	: NIL														
Cours	e Outo	comes	After t	he com	pletion	of the o	course	the s	stud	lent	wil	ll be a	ble (to		
CO1	Expl	lain th	e basic	concep	ts relat	ed to sa	afety in	Pro	cess	s Ind	us	tries.				
CO2	Exp	lain th	e funda	menta	l princi	ples of	fire sci	ence	•							
CO3	Reco	gnize	various	hazard	s assoc	iated in	n chem	ical	pro	cess	ind	dustri	es.			
CO4	Dem	onstra	te vario	us safe	ty aspe	cts of c	chemica	al pla	nt	opera	atic	on				
CO5	App	ly sui	table te	echniqu	ues to	anticip	ate an	ıd qı	lan	tify	ha	zards	in	chem	nical	
	proc	ess in	dustrie	es.	~ ~			~								
~ ~ ~					CO -	POMA	APPINC	;			0				2010	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	98	PO	9	PO10) P	011	PO12	
COI	3	2				2					_	2	_			
CO2	3	2				2					4	2	_			
CO3	3					2					4	2	_			
CO4	3					2					_	2				
005	3				<u> </u>	2	Dattar					2				
				Cont	Asses		Patter	11 Too		_						
Blo	om'e ([¬] ateo	177	Too	Test1 Test 0 Other				End Semester							
Dio		Juicg	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	108		105	14	too	lei ls	Examination			ı			
Remer	nher			<i>\</i>			,		,							
Under	stanc	1		· /		v	•	· ·	,							
Apply		-		· ·			•	V	,				V			
Analy	se			•		-		V	•							
Evalu	ate							V	,							
Create								V	,							
				M	lark Di	stribu	tion of	CIA								
Ca	1200						Theor	- [T	ጥነ							
Stru	use cture						meory	/ [L-	τj				-	То	tal	
[L-T-P-J] Attenda		ince	Assignment T		Test-1 Test-2		Total Mark									
														3		

3-0-0-0
		Total	Mark distribution					
Total Ma	rks	CIA (Marks)	ESE (Marks)	E	SE Duration			
100		40	60		3 hours			
		End Semester	Examination [ESE]: Patter	<u>n</u>				
PATTERN		PART A	PART B		ESE Marks			
PATTERN 1	10 Qu questi marks Marks marks	estions, each on carries 2 s : (2x10 =20 s)	2 questions will be given a each module, out of what question should be answer Each question can hat maximum of 2 subdivision Each question carrier marks. Marks: (5x8 = 40 marks) The 3 hours	from nich 1 wered. ave a ons. es 8 ime:	60			
	Total I	Marks: 20	Total Marks: [5x8 = 40 mar	rks]				

SYLLABUS

MODULE I: Introduction to chemical process Safety

Concept and importance of industrial safety. Definitions: Accident, Injury, Unsafe act, Unsafe Condition, Dangerous Occurrence, Reportable Accidents-Cost of accidents-Theories of accident causation- Safety Policy-Safety Officer-responsibilities, authority. Safety committee-need, types, advantages- Monitoring Safety Performance: Frequency rate, severity rate, incidence rate, activity rate Review of major Industrial accidents: Bhopal, Flixborough and SEVESO

MODULE II: Fire protection systems in chemical process industries

Elements of fire- Classes of fire- NFPA diamond- Measures of Flammability-Fire alarms: addressable and non-addressable type-Fire detectors-portable and fixed fire protection systems- Basic concept of firefighting with water, carbon dioxide, powders, foams, halons.

MODULE III: Hazards in chemical industries

Chemical hazards: Classification- Allowable concentrations: T.L.V-TWA, STEL, TLV-C, IDLH. Physical hazards-Atmospheric contaminants, Sound, Vibration Light, Radiation and Temperature. Electrical hazards, Ergonomic hazards, Chemical reaction hazards: Runaway Reaction. Specific reactive chemical hazards: Pyrophoric substances, Oxidizers, Polymerizing substances etc.

MODULE IV: Safety Practices in chemical process industries

Inherently safer design, Hazardous area classification, Work permit systems, MSDS -HAZCHEM Code, Personal protective equipments: respiratory and non-respiratory equipment-Emergency planning: onsite and offsite emergency planning, Mock drill.

MODULE V: Hazard assessment techniques

Safety Inspections, safety Audits, Dow index, HAZOP, Fault tree analysis, Failure mode and effect analysis, Event tree analysis, Bow tie diagram.

Text books

- 1. Daniel A Crowl& Joseph F Louvar, Chemical Process Safety, Second Edition, Prentice-Hall.
- 2. B. K. Bhaskara Rao, Er. R. K. Jain, Vineet Kuma, Safety in Chemical Plants/Industry and Its Management", Khanna Publishers, First edition, 2010

- 1. Sam Mannan (Editor). Lee's Loss Prevention in the Process Industries. (Fourth edition). Butterworth-Heinemann Ltd., UK. (2012).
- AIChE/CCPS. Guidelines for Chemical Process Quantitative Risk Analysis. (second edition). Centre for Chemical Process Safety, American Institute of Chemical Engineers, New York. (2000).
- 3. Bob Skelton. Process safety analysis: An Introduction, Institution of Chemical Engineers. (1997)
- AIChE/CCPS. Guidelines for Hazard Evaluation Procedures. (Second edition). Centre for Chemical Process Safety, American Institute of Chemical Engineers, New York. (1992).
- 5. Ian T. Cameron and Reghu. Raman, Process Systems Risk Management, Volume (Process Systems Engineering) Elsevier Academic press, (2005).
- 6. NFPA fire protection handbook.

COURSE CONTENTS AND LECTURE SCHEDULE					
No.		No. of Hours			
	MODULE 1 (6 hours)				
1.1	Concept and importance of industrial safety.	1			
1.2	Definitions: Accident, Injury, Unsafe act, Unsafe Condition, Dangerous Occurrence, Reportable Accidents-Cost of accidents	1			
1.3	Theories of accident causation	1			
1.4	Safety Policy-Safety Officer-responsibilities, authority. Safety committee-need, types, advantages	1			
1.5	Safety Performance: Frequency rate, severity rate, incidence rate, activity rate	1			
1.6	Review of major Industrial accidents: Bhopal, Flixborough and SEVESO	1			

	MODULE II (7 hours)	
2.1	Elements of fire- Classes of fire- NFPA diamond	1
2.2	Measures of Flammability	1
2.3	Fire alarms: addressable and non-addressable type	1
2.4	Fire detectors	1
2.5	Portable fire protection systems	1
2.6	Fixed fire protection systems	1
2.7	Basic concept of firefighting with water, carbon dioxide, powders, foams, halons.	1
	MODULE III (7 hours)	
3.1	Chemical hazards: Classification- Allowable concentrations: T.L.V-TWA, STEL, TLV-C, IDLH.	1
3.2	Physical hazards-Atmospheric contaminants, Sound, Vibration	1
3.3	Physical hazards-Light, Radiation and Temperature.	1
3.4	Electrical hazards	1
3.5	Ergonomic hazards	1
3.6	Chemical reaction hazards: Runaway Reaction	1
3.7	Specific reactive chemical hazards: Pyrophoric substances, Oxidizers, Polymerizing substances etc.	1
	MODULE IV (5 hours)	
4.1	Inherently safer design, Hazardous area classification	1
4.2	Work permit systems	1
4.3	MSDS -HAZCHEM Code	1
4.4	Personal protective equipments: respiratory and non-respiratory equipment	1
4.5	Emergency planning: onsite and offsite emergency planning, Mock drill.	1
	MODULE V (10 hours)	
5.1	Safety Inspections	1
5.2	Safety audit	1
5.3	Dow index	1
5.4	HAZOP	1
5.5	HAZOP	1

5.6	Fault tree analysis	1
5.7	Fault tree analysis	1
5.8	Failure mode and effect analysis	1
5.9	Event tree analysis	1
5.10	Bow tie diagram.	1

	CO Assessment Questions
1	List the various accident causation theories and explain any one in details
2	Distinguish between addressable and non-addressable type fire alarm systems.
3	Air contains 5 ppm of diethylamine (TLV-TWA of 5 ppm), 20 ppm of cyclohexanol (TLV-TWA of 50 ppm), and 10 ppm of propylene oxide (TLV-TWA of 2 ppm). Find the mixture TLV-TWA. Are the workers overexposed under these conditions?
4	Discuss the formation and uses of HAZCHEM code. Explain the code 3YE
5	Differentiate between safety audit and safety inspection. Briefly explain the audit procedure.

24CH0724		PROCESS UTILITY &			ITY &	S PIPELINE		L	Т	Р	J	S	С	Yea Introd	r of uction
			DESIGN		3	0	0	0	3	3	20	24			
Preamble: The course focuses on understanding the important fundamentals of chemical process utilities and pipeline design. The course covers process utility systems, introduction to fuels, steam systems, refrigeration, ventilation and an overview of piping. The emphasis on the fundamentals will help the student to understand the concepts and apply them accordingly. Prerequisite: Nil															
Cours	se Ou	tcome	s: After	the c	omple	tion of	the c	ours	se t	he s	stu	lent	W	ill be a	ble to
CO1 ^E s)escri ysten	be the	major ployed	types in inc	, proc lustri	esses es.	and a	ssoc	ciat	ed e	equ	ipme	en	ts of u	tility
CO2 C	Comp	ute the	e powe	r ratir	ng of e	quipm	ents.	1 1						· •	
CO3 h a	umid nd re	m mat lification efrigera	themation of the second	perati	alcula ons.	tions	involv	ed 1	n s	stea	m ۽	gene	ra	t10n,	
CO4 S	Select	the re	levant	pipes	for va	rious	chemi	cal	pro	cess	ses.	•			
CO5 IG	denti ised i roces	fy diffe n s plan	erent 1 ts.	types	of pip	es, joi	nts, fi	ittin	gs	anc	l re	late	d a	access	sories
CO6 C	hoos	e relev	vant in	sulati	on ma	terial	for pi	ping	(sy	ster	ns.				
					CO -	PO MA	APPINC	<u>}</u>	, ,						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PC)9	PO1	0	PO11	PO12
CO1	3	3				2									2
CO2	3	3	2												2
CO3	3	3	2												2
CO4	3	3				2									2
CO5	3	3													3
CO6	3	3													2
					Asses	sment	Patter	'n							
				Conti	nuous	Asses	sment	Тоо	ls			Fnd	S	emeste	r
Bloc	om's (Catego	ry	Test	t1	Tes	t 2	Oth too	ler ls			Exa	am	inatio	n
Remer	nber			/		~	•	V					V		
Understand				~		~	·	V	•		v				
Apply				~		V	·	V						/	
Analyse V															
Evalu	ate							V							
Create	2			٦.4	1 D'				•						
Mark Distribution of CIA															
Course	Course Structure Attendance Theory [L- T] Total														

[L-T-P-J]			Assignment	Test-1	Test-	2 Ma	ırks
3-0-0-	3-0-0-0		15	10	10	40	0
		Total N	lark distribution	n			
Total Marks CIA (Marks) ESE (Marks)						SE Duratio	on
100		40	60			3 hours	
End Semester	[.] Exami	nation [ESE]: Pat	tern				
PATTERN		PART A	PAR	RT B		ESE Ma	rks
PATTERN 1	10 Questions, each question carries 2 marks2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.2 N 1Marks: (2x10 = 20 marks)2 equestions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.2 N 1Marks: (2x10 = 20 marks)2 equestions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions.				60		
			Time: 3 hours				
	Total	Total Marks: 20 Total Marks: [5x8 = 40 marks]					
		SY	LLABUS				
MODULE I:	Proces	s Utility Systems					
Process U	tility	Systems: Clas	sification of	process	s utili	ty syste	ms,
Importance of process utilities in chemical industries and plants. Water as a utility in process industries: Sources of water, hard and soft water, requisites of industrial water and its uses, methods of water treatment, storage and distribution of water, recycle and conservation of water. Cooling Tower: Types and performance evaluation. MODULE II: Introduction to fuels							
Introduction to Fuels, Properties of Fuel oil, Coal and Gas, Storage, handling and							
preparation of fuels, Principles of Combustion, Combustion of Oil, Coal and Gas. Compressed air system: Types of air compressors, Compressor efficiency, Efficient compressor operation, Compressed air system components, Capacity assessment, Leakage test, Factors affecting the performance and efficiency of compressors. Vacuum Pumps: Types of vacuum pumps and their performance characteristics. MODULE III: Steam System							

Steam System: Steam and its importance, Properties of steam, Problems based on enthalpy calculation for wet steam, dry saturated steam and superheated steam. Boilers: Types of steam generators/boilers, Combustion in boilers, Performance evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities, Boilers Act. Steam handling and distribution: Steam distribution system, Assessment of steam distribution losses, Steam economy,

Steam traps, Condensate and flash steam recovery system, Identifying

opportunities for energy savings. Waste Heat Recovery: Classification, Advantages

and applications, commercially viable waste heat recovery devices, Saving potential.

(Can reduce the content by referring to the core course of Piping if there is any overlap)

MODULE IV: Refrigeration and Ventilation

Refrigeration and Ventilation: Principles of refrigeration, vapour compression and vapour absorption refrigeration cycles, types of refrigerants and their importance. Production of cryogenic temperatures. Characteristics of Air-water systems.

Humidification and Dehumidification equipments. Exhaust & Ventilation. MODULE V: Introduction to Piping

Introduction to Piping: Classification of pipes, pipe materials, pipe sizing, pipe wall thickness, schedule number, codes and standards. Piping colour codes as per types of fluid passing through pipes. Piping Components: Pipes, Fittings, Flanges, Gaskets, Bolting and Valves. Pipe fittings: Functions and properties, types of pipe fittings and their selection. Gaskets: Functions and properties, types of gaskets and their selection. Valves: Types of valves, selection criteria of valves for various systems. Piping insulation: Insulation materials, estimating thickness of insulation, critical thickness of insulation, optimal thickness of insulation.

Text books

- 1. Jack Broughton, "Process utility systems", Institution of Chem. Engineers, U.K.
- 2. M.S. Peters and Timmerhaus, "Plant design and Economics for Chemical Engineers", Mc Graw Hill, 3rd Edition.
- Roger Hunt and Ed Bausbacher, "Process Plant layout and Piping Design" PTR Prentice Hall Inc.
- 4. F.C. Vibrandt and C.E. Dryden, "Chemical Engineering Plant Design", McGraw Hill, Fifth Edition.

- 1. Nordell, Eskel, Water Treatment for industrial and other uses, Reinhold Publishing Corporation, New York (1961).
- 2. Plant Utilities by Dr. Mujawar, Nirali Prakashan Publication.
- 3. Plant Utilities by D.B. Dhone, Nirali Prakashan Publication.
- 4. P.L.Balleney, Thermal Engineering, Khanna Publisher, New Delhi.

	COURSE CONTENTS AND LECTURE SCHEDULE					
No		No. of				
INO.		Hours				
	MODULE I (5 hours)					
1 1	Process Utility Systems: Classification of process utility	1				
1.1	systems.					
	Importance of process utilities in chemical	1				
	industries and					
	plants.					
1.0	Water as a utility in process industries: Sources of water,	1				
1.4	hard					
	and soft water, requisites of industrial water and its					
	uses.					

1.3	Methods of water treatment, storage and distribution of water,	1
	recycle and conservation of water.	
1.4	Cooling Tower: Types and performance evaluation.	1
	MODULE II (6 hours)	
2.1	Introduction to Fuels, Properties of Fuel oil, Coal and Gas,	1
	Storage.	
2.2	Handling and preparation of fuels, Principles of Combustion,	1
	Combustion of Oil, Coal and Gas.	
2.3	Compressed air system: Types of air compressors.	1
2.4	Compressor efficiency, Efficient compressor operation,	1
	Compressed air system components, Capacity assessment	
2.5	Leakage test, Factors affecting the performance and efficiency	1
	of compressors.	
26	Vacuum Pumps: Types of vacuum pumps and their	1
2.0	performance characteristics.	
	MODULE III (8 hours)	

3.1	Steam System: Steam and its importance, Properties of steam,	1
	Problems based on enthalpy calculation for wet steam, dry saturated steam and superheated steam.	
3.2	Boilers: Types of steam generators/boilers.	1
3.3	Combustion in boilers, Performance evaluation, Analysis of losses, Feed water treatment.	1
3.4	Blow down, Energy conservation opportunities, Boilers Act.	1
3.5	Steam handling and distribution: Steam distribution system, Assessment of steam distribution losses.	1
3.6	Steam economy, Steam traps, Condensate and flash steam recovery system, Identifying opportunities for energy	1
	savings.	
3.7	Waste Heat Recovery: Classification, Advantages and applications.	1
3.8	Commercially viable waste heat recovery devices, Saving potential.	1
	MODULE IV (6 hours)	
4.1	Refrigeration and Ventilation: Principles of refrigeration,	1
4.2	Vapour absorption refrigeration cycles.	1
4.3	Types of refrigerants and their importance. Production of cryogenic temperatures.	1

4.4	Characteristics of Air-water systems.	1
4.5	Humidification and Dehumidification equipments.	1
4.6	Exhaust & Ventilation.	1
	MODULE V (10 hours)	
5.1	Introduction to Piping: Classification of pipes, pipe materials, pipe sizing, pipe wall thickness, schedule number, codes and standards.	1

5.2	Piping colour codes as per types of fluid passing through	1
	pipes.	
5.3	Piping Components: Pipes, Fittings, Flanges, Gaskets, Bolting and Valves.	1
5.4	Pipe fittings: Functions and properties.	1
5.5	Types of pipe fittings and their selection.	1
5.6	Gaskets: Functions and properties, types of gaskets and their selection.	1
5.7	Valves: Types of valves.	1
5.8	Selection criteria of valves for various systems.	1
5.9	Piping insulation: Insulation materials, estimating thickness of insulation.	1
5.10	Critical thickness of insulation, optimal thickness of insulation.	1

	CO Assessment Sample Questions									
	1. State and explain any seven requirements of a good water									
1	distribution system.									
	2. Differentiate primary and secondary plant utility systems.									
	1. Classify different types of vacuum pumps and explain									
	performance characteristics.									
	2. A single stage compressor is used to compress 800 m^3/hr of CO2									
2	measured at 288 K and 1 bar from its initial stage of 0.5 bar and									
4	300 K to a final pressure of 1.5 bars. A volumetric efficiency of 75 %									
	and a compression efficiency of 85 % may be assumed. Assuming									
	adiabatic compression, calculate the power required for driving the									
	compressor, the									
	piston displacement in m ³ /s and the discharge temperature.									
	1. Define Psychrometry? Enumerate and explain different									
	psychrometric processes and represent them on a psychrometric									
3	chart.									
	2. Distinguish economy and capacity with respect to boilers?									
	List and explain the different types of boilers used in chemical									
	industry.									
	3. A refrigeration system has working temperature of -27° C and 37° C.									
	Find									

	out actual COP, if it is 70% of Maximum.						
	1. State and explain some of the general considerations that						
1	should be evaluated when selecting and applying materials for						
4	piping.						
	2. Explain an equivalent pipe. Write the expression for equivalent						
	size of a						
	compound pipe.						
	1. Explain the effect of pipe fitting on pressure losses.						
5	2. Give the significance of hangers and supports in pipeline						
	design. List different types of pipe hangers and pipe supports.						
	1. Classify different insulation materials based on the						
6	application in						
6	commercial piping industry.						
	2. Explain economic thickness of insulation. List any two						
	parameters required to evaluate economic thickness of insulation.						

SEVENTH SEMESTER HONOUR

24CHH70 9		PROCESS INTEGRATION AND						L	Т	Р	J	S	С	Ye: Intro n	ar of ductio
L L				TENS.	IFICA	TION		4	0	0	0	4	4	20	24
Pream	ıble:	The ob	ojectiv	e of th	is cou	rse is 1	to imp	art	the	kno	owl	edg	e c	of syste	matic
methods for the material and energy integration of chemical process															
industries. In this course, particular emphasis will be given to various															
techniques for process integration and intensification of heat exchangers,															
mass exchangers, reactors and distillation															
Columns. Prereguisite: Nil															
Cours		tcom	e s: Aft	er the	e comi	oletion	of th	e co	our	se t	he	stu	de	nt will	be
able to	с с с С							0 00							~ ~
CO1	Opt	imize	the he	eating	and o	coolin	g utilit	y r	equ	irer	ner	nt			
CO2	Des	sign h	eat ex	chang	ger ne	twork	using	; pir	nch	teo	hn	olo	gy		
CO3	Mo	dify pr	ocesse	es for	minin	nizatio	n of ra	aw :	ma	teria	al a	nd	wa	aste	
	gen	eratio	n.												
CO4	Der	nonst	rate a	a com	prehe	ensive	unde	erst	and	ling	g o	f p	ro	cess	
	inte	ensific	ation	princi	ples	• •	• ~			1	•				
C05	Ext	plain t	he typ	bes of	proce	ss inte		atio	nt	ech	nıq	ues	5		
	DO 1	DOO	DOO	DO 4				G	~~		20	D O	10	DO11	DO10
	PO1	PO2	PO3	P04	P05	P06	PO7	P	08	P	J 9	PO	10	P011	P012
	3	3	3							_				•	
CO2	3		3							_				2	
CO3	3		3												
CO4	3		3												
CO5	3		3				D 11								
				F A	Assess	ment	Patte	ern							
Dlage	~'~ C			Cont	1nuou	IS ASS	essme	ent				En	d		
B1001	n's C	alego	гу	Tes	, .+1	Tes	st 2	Ot1	her	-		Se	m	ester	
								to	ols			Ez n	ra1	ninati	.0
Remen	nber					1		٦							
Under	stan	d				٦		١							
Apply						1	/	٦							
Analys	se							1							
Evalua	ate							٦							
Create	;							١							
				Ma	rk Dis	stribu	tion o	f C	ΙΑ						
							-								

Theory [L- T]	

Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Mark s		
4-0-0-0	5	15	10	10	40		

Total Mark distribution											
Total Ma	rks	CIA (Marks)	ESE (Marks)	E	SE Duration						
100		40	60		3						
End Semes	ter E	xamination [E	<u>SE]: Pattern</u>								
PATTERN		PART A	PART B		ESE Marks						
PATTERN 1	10 Q ques carrie Mark mark	uestions, each tion es 2 marks s: (2x10 =20 s) Marks: 20	2 questions will be from each module, of which 1 question show answered. Each qu can have a maximum sub divisions. Each question carried marks. Marks: (5x8 marks) Time: 3 hours Total Marks: [5x8 = 40 marks]	given out of uld be estion n of 2 es 8 = 40	60						
		S	YLLABUS								

MODULE I: Process Integration (11 hours)

Definition of Process Integration, Areas of application and techniques available for Process Integration, Onion model of chemical process design, Role of thermodynamic laws. Energy targeting methods of Heat Exchanger Networks: Composite curve method,

Problem table algorithm, Grand composite curve.

MODULE II: Targeting of Heat Exchanger Network (9 hours)

Number of units targeting, Area targeting, Cost targeting, Number of shells targeting.

Heat Exchanger Network Design: The pinch design method, Grid

diagram, Stream splitting design for single pinch networks.

MODULE III: Mass Exchanger Network Synthesis (11 hours)

Mass Exchanger Network, Minimum Mass Separating Agents (MSA), Mass exchange

networks for minimum external MSA. Water system design: Water use, Targeting maximum water reuse for single contaminants.

MODULE IV : Mechanism involved in the process intensification (8 hours)

Intensification by fluid flow process, Mechanism of Intensification by mixing, Intensification in Reactive system.Problems leading to sustainable development Concept, Issues and Challenges, Strategies in process design.Scales and stages of process intensification, Methods and Tools for Achieving sustainable design,Multi-level

Computer aided tools.

MODULE V: Types and features of process intensification (9 hours)

Stochastic Optimization, Optimization Algorithms, Applications of Optimization

Algorithms.Mechanism of Cavitation-based PI, Cavitational Reactor Configurations

and activity, Parametric effects on cavitation. Principles, Types of Intensified

Distillation Units, Design of membrane-assisted distillation.

Text books

- 1. Robin Smith, Chemical Process Design and Integration, John Wiley and Sons. Ltd., New Delhi,2005.
- 2. 2. Uday. V. Shenoy, Heat Exchanger Network Synthesis, Gulf Publishing Co, USA, 1995.
- 3. Andrzej Stankiewicz, Tom Van Gerven, Georgios Stefanidis, The Fundamentals of Process Intensification ,John Wiley & Sons Technology & Engineering, 2019.

- 1. Warren D. Seider, J. D. Seader and Daniel R. Lewin, Product & Process Design Principles, Wiley Publication.
- 2. James M. Douglas, Conceptual Design of Chemical Process, McGraw Hill, New York, 1988.
- 3. Kemp I.C, Pinch Analysis and Process Integration A user guide on process integration for efficient use of energy, 2nd Edition, Butterworth – Heinneman, 2006.

-												
	COURSE CONTENTS AND LECTURE SCHEDULE											
No.	No. of Hours											
	MODULE I											
1.1	Process Integration: Definition of Process Integration, Areas of application and techniques available for Process Integration.	1										
1.2	Onion model of chemical process design, Role of thermodynamic laws.	1										

1.3	Energy targeting methods of Heat Exchanger Networks: Hot Composite curve	1
1.4	Energy targeting methods of Heat Exchanger Networks: Hot Composite curve	1
1.6	Cold composite curve	1
1.7	Pinch determination	1
1.8	Pinch determination	1
1.9	Problem table algorithm	1
1.10	Problem table algorithm	1
1.11	Grand composite curve	1
	MODULE II	
2.1	Targeting of Heat Exchanger Network: Area targeting	1
2.2	Targeting of Heat Exchanger Network: Area targeting	1
2.3	Targeting of Heat Exchanger Network: Area targeting	1
2.4	Number of units targeting, Cost targeting, Number of shells targeting.	1
		1
2.5	Number of units targeting, Cost targeting, Number of shells targeting.	1
2.6	Heat Exchanger Network Design: The pinch design method	1
2.7	Grid diagram, Stream splitting design for single pinch networks.	1
2.8	Grid diagram, Stream splitting design for single pinch networks.	1
2.9	Grid diagram, Stream splitting design for single pinch networks.	1
	MODULE III	
3.1	Mass Exchanger Network Synthesis: Mass Exchanger Network	1
3.2	Minimum Mass Separating Agents (MSA): Concentration interval method	1
3.3	Minimum Mass Separating Agents (MSA): Concentration interval method	1
3.4	Composite curve method	1
3.5	Composite curve method	1
3.6	Mass exchange networks for minimum external MSA	1

3.8	Mass exchange networks for minimum external MSA	1
3.9	Water system design: Water use	1
3.10	Targeting maximum water reuse for single contaminants.	1
3.11	Targeting maximum water reuse for single contaminants.	1
	MODULE IV	
4.1	Intensification by fluid flow process	1
4.2	Mechanism of Intensification by mixing, Intensification in Reactive system	1
4.3	Mechanism of Intensification by mixing, Intensification in Reactive system	1
4.4	Problems leading to sustainable development Concept, Issues and Challenges	1
4.5	Problems leading to sustainable development Concept, Issues and Challenges	1
4.5	Strategies in process design. Scales and stages of process intensification	1
4.6	Strategies in process design. Scales and stages of process intensification	1

4.7	4.7 Methods and Tools for Achieving sustainable design.							
4.8	Multi-level Computer aided tools.	1						
5.1	5.1 Stochastic Optimization, Optimization Algorithms							
5.2	Applications of Optimization Algorithms	1						
5.3	Mechanism of Cavitation-based PI	1						
5.4	Cavitational Reactor Configurations and activity, Parametric effects on cavitation	1						
5.5	Cavitational Reactor Configurations and activity, Parametric effects on cavitation	1						
5.6	Principles, Types of Intensified Distillation Units,	1						
5.7	Principles, Types of Intensified Distillation Units,	1						
5.8	Design of membrane-assisted distillation.	1						
5.9	Design of membrane-assisted distillation.	1						

	CO Assessment Sample Questions								
1	Define the term process integration.								
2	Write Euler's equation and briefly explain its use in process integration.								
3	List out the heuristics for mass exchanger network design.								
4	Explain the intensification of reactive systems.								
5	Enumerate the steps followed in the design of membrane-assisted distillation.								

04011	1710	Du	-1 D -1'	1 Doliou			Р	J	s	С	Yea	ar of			
2+0111710			Energy Economics and Policy					4	0	0	0	4	4	20	24
Pream	ole: T	his co	ourse	cover	s the	ecor	nomic	pr	inc	iple	S 1	tha	t	guide	energy
related															
behavior of both the producers and the consumers of energy and the policy															
regime that has emerged to govern it. The course aims at broadening the															
vision of students while making any energy related decision as a technology															
developer, energy manager, entrepreneur, policy maker, researcher in future															
Drorogu	or simply for personal energy use in day-to-day activities.														
Course	Ω		Aftor	the eet	nnloti	on of t	haaa	1200	<u>+</u> h	0.01	h	ont		ill bo ol	bla ta
Course	Deac	miho E	AILEI		impietic						uu		W.		
001	impl	ement	ed for		impuc)[] [][(variou	IS S	ecu	ns	and	IP	0110	Cy	
	ener	ev sec	urity	and cli	imate	chang	e.								
CO 2	Calc	ulate t	he en	ergy co	ost bas	sed on	gene	rati	on	and	co	ทรเ	ım	ption.	
CO 3	Expl	ain th	e En	ergy R	egula	tions	and p	olio	cies	im	ple	eme	ent	ed in I	ndian
	Powe	er		00	U		-				-				
	Secto	or													
CO 4	Estin	mate	the e	nergy	tariff	with	respe	ect	to	Cer	ntra	al a	ano	d State	e
	Regi	latory	7												
	Com	missi	on.			C	1	1			1.				
05	Desc	eribe tr	ie sai	lent iea	atures	OI ren		le ei	ner	gy I	0011	cies	3.		
00		DOO	DOO						00				10	DO11	DO10
CO_1	2	PO2	P03	PO4	P05	P00	P07	P	08	PC	. 9	PU	10	POII	P012
CO1	ン 2	2				ン 2	い 3			-	-				2
CO_2	ン 2	3				ン 2	い つ			_	_				2
CO_{3}	ৃ ১ ২	3				े २	े २			-	+				2
CO =	3	5				3	3				_				2
0.0	5					J nont D	J Dottorn	<u> </u>							4
				Conti	1550551		anont	т То	10						
Ploc	m'a C	aterom	7	Conu	nuous ±1	ASSES			лs а.с.т	-		En	d S	Semeste	er
DIOC		allgory	y I	Tes	ιı	Tes	ι 4	tor				Ez	kar	ninatio	n
Remember				~			/		/	-				v	
Under	stand			• •			,	•	/	-				- -	
Applv	- carra			· ·		~	/		/	-				V	
Analys	e			-				ľ	/						
Evaluate								L	/						

~

Create

Mark Distribution of CIA									
_	Attendance	Th	eory [L- T]		Total				
Course Structure [L-T-P-J]		Assignment	Test-1	Test-2	Mark s				
4-0-0-0	5	15	10	10	40				

Total Mark distribution							
Total Mar	rks	CIA (Marks)	ESE (Marks)	SE Duration			
100		40	60		3 hours		
End Semester	Exami	nation [ESE]: Pat	tern				
PATTERN		PART A	PART B		ESE Marks		
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)		 2 questions will be from each module, ou which 1 question sho be answered. E question can have maximum of 2 divisions. Each question carrie marks. Marks: (5x8 = 40 mar Time: 3 hours 	given at of ould Cach e a sub es 8 ks)	60		
	Total	Marks: 20	Total Marks: [5x8 = 40 marks]				
		S	YLLABUS				
MODULE I:	Energy	and Policy (9 Ho	urs)				

Introduction, sector wise consumption of energy resources: Electricity, Fuel, Transportation, Energy Scenario of different sectors: Indian and International Level – Coal, Oil, Natural Gas, RE, Hydro, Nuclear. Global market outlook, import and export position, Resources, Reserves, All India Energy Scenario, Energy Conservation Act 2001 and amendments, Energy Security -Concept, Issues and Economics, Trade-Off

between Energy Security and Climate Change.

MODULE II: Energy Economics (9 Hours)

Time Value of Money Concept, Simple Payback Period, IRR, NPV, Life Cycle Costing,

LCA, LCOE, Cost of Saved Energy, Cost of Energy generated, Examples from energy generation and conservation, Energy Chain.

MODULE III: Energy Regulations in Indian Power Sector (9 Hours)

Structure of Indian Power Sector, Indian Electricity Grid Code, Electricity Act 2003

and amendments, National Electricity Policy, Deviation Settlement mechanism, Retail

Competition.

MODULE IV: Tariff Regulations (10 Hours)

Annual Revenue Requirements, Tariff Structure, Role of State/Central Regulatory

Commissions, involved costs – energy purchase, losses, surcharges, O&M, Interests, Depreciation, return on Equity, Total Revenue Requirement, Tariff Policy, Understanding tariff order.

MODULE V: Policies for Renewable Energy (11 Hours)

Renewable Energy Policy, Incentives and subsidies, Foreign Investment, Role of MNES, IREDA, Bio Energy Policy, Solar Policy, National Solar Mission, Waste Management Practices and policies, Renewable purchase obligations, Feed in Tariffs, Renewable Energy Certificates, Hydro Power Policy, Small/Large Scale Hydro Power Plants, PSH, National policy on Hydropower in India, India EV Policy, Other schemes –

Saubhagya, UJALA, UDAY, RFMS, Smart Cities, etc.

Text books

1.	Alessan	dro Rubino,	Aless	sandro S	Sapio, Massimo	La Sc	ala, Handbool	k of
	Energy	Economics	and	Policy_	Fundamentals	and	Applications	for
	Enginee	ers and Ener	gy Pla	anners-A	cademic Press,	(2021	.).	

- 2. Subhes C. Bhattacharyya Energy Economics_ Concepts, Issues, Markets and Governance-Springer (2019)
- 3. James M. Griffin and Henry B. Steele (Auth.) Energy Economics and Policy-Academic Press Inc., (1986).
- RS Axelrod & SD VanDeveer (Eds.). The Global Environment: Institutions, Law, and Policy. CQ Press; Fifth edition (2019). ISBN 1544330146.
- 5. TF Braun & MG Lisa. Understanding Energy and Energy Policy. Zed Books,

(2014) ISBN 1780329342.

Reference books

- 1. Roy L. Nersesian Energy Economics, Markets, History and Policy-Routledge (2016)
- 2. Michael G. Webb, Martin J. Ricketts (auth.) The Economics of Energy-Macmillan Education UK (1980).
- 3. Kandpal, Tara Chandra, and Hari Prakash Garg. Financial evaluation of renewable energy technologies. MacMillam India Limited, 2003.
- 4. Nersesian, Roy L. Energy economics: markets, history and policy. Routledge, 2016, ISBN-13: 978-1138858374, ISBN-10: 1138858374.
- 5. Zweifel, Peter, Aaron Praktiknjo, and Georg Erdmann. Energy economics:

theory and applications. Springer, 2017, ISBN 978-3-662-53022-1. COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1	
1.1	Introduction, sector wise consumption of energy resources:	1
	Electricity, Fuel, Transportation	
1.2	Energy Scenario of different sectors: Indian and International	1
	Level – Coal. Oil	

1.3	Natural Gas, RE, Hydro, Nuclear	1
1.4	Global market outlook, import and export position	1

1.5	Resources, Reserves	1						
1.6	All India Energy Scenario	1						
1.7	Energy Conservation Act 2001 and amendments	1						
1.8	Energy Security -Concept, Issues and Economics	1						
1.9	Trade-Off between Energy Security and Climate Change	1						
	MODULE II							
2.1	Time Value of Money Concept	1						
2.2	Simple Payback Period	1						
2.3	IRR, NPV	1						
2.4	Life Cycle Costing	1						
2.5	LCA, LCOE	1						
2.6	Cost of Saved Energy	1						
2.7	Cost of Energy generated	1						
2.8	Examples from energy generation and conservation	1						
2.9	Energy Chain	1						
	MODULE III							
3.1	Structure of Indian Power Sector	1						
3.2	Structure of Indian Power Sector	1						
3.3	Indian Electricity Grid Code	1						

3.4	Electricity Act 2003 and amendments	1
3.5	National Electricity Policy	1

3.6	Deviation Settlement mechanism	1				
3.7	Retail Competition					
3.8	Retail Competition	1				
3.9	Retail Competition	1				
	MODULE IV					
4.1	Annual Revenue Requirements	1				
4.2	Tariff Structure, Role of State/Central Regulatory Commissions involved costs – energy purchase, losses, surcharges	1				
4.3	Tariff Structure, Role of State/Central Regulatory Commissions involved costs – energy purchase, losses, surcharges	1				
4.4	O&M	1				
4.5	Interests, Depreciation, return on Equity	1				
4.6	Interests, Depreciation, return on Equity					
4.7	Total Revenue Requirement					
4.8	Tariff Policy 1					
4.9	Understanding tariff order 1					
4.10	Understanding tariff order 1					
	MODULE V					
5.1	Renewable Energy Policy, Incentives and subsidies 1					
5.2	Foreign Investment, Role of MNES, IREDA					
5.3	Bio Energy Policy, Solar Policy, National Solar Mission	1				
5.4	Waste Management Practices and policies 1					

5.5	Renewable purchase obligations, Feed in Tariffs	1
5.6	Renewable Energy Certificates, Hydro Power Policy	1
5.7	Small/Large Scale Hydro Power Plants	1
5.8	PSH, National policy on Hydropower in India	1
5.9	India EV Policy	1
5.10	Other schemes – Saubhagya, UJALA, UDAY, RFMS, Smart Cities, etc.	1
511	Other schemes – Saubhagya, UJALA, UDAY, RFMS, Smart Cities, etc.	1

	CO Assessment Questions							
1	Describe the energy scenario of different sectors in Indian and International							
	level with respect to energy supply and demand.							
2	Your microwave oven of 1 kW has an efficiency of 65%. The transmission and distribution loss in the electricity network is 8% and the overall average efficiency of the power generation system in the country is 40%. Calculate the quantity of primary fuel will be required to supply you with 1 kWh of							
	energy to run your microwave oven.							
3	Describe the energy regulations and policies implemented in Indian Power Sector.							
4	An energy saving lamp which consumes 14 W costs Rs.210/- while an incandescent lamp of equivalent luminosity (75 W) costs Rs.52/ Assuming 10 h of lighting per day and a cost of Rs.10 per kWh of electricity consumption, determine the payback period.							
5	Describe the policies and status for renewable energy production through waste management practices in India.							

24CHH711 ADVANC		/ANCF	CED PROCESS CONTROL				L	Т	Ρ	J	S	С	Yea Introd	ar of uction	
							4	0	0	0	4	4	20	24	
Preamble: This course would enable students to gain knowledge on stability analysis using frequency response, transient response of closed and open- loop systems, and their stable and safe range of operation. This course introduces students to some modern methods and tools used for measuring variables in a process industry which are essential for proper control and functioning of all equipment and processes.															
Prerequ	isite: I	Vil.			-										
Course	Outco	omes: A	After tl	ne con	npletio	n of tł	ne cou	ırse	the	stu	de	nt v	vill	be abl	e to
CO1	Desc: servo	ribe th and r	e vario egulat	ous re ory pi	preser roblen	ntation ns of c	ns of c losed	onti looj	ol s o sy	syst /ste	em ms	is ai 8.	nd	analyz	æ
CO2	Analy meth	yze the ods a:	e stab: nd eva	ility of duate	linea: contr	r syste oller t	ems u uning	ısinş g pa	g ai ran	naly	tic ers.	al a	nc	l grapł	nical
CO3	Apply appli	7 mode cations	ern co s.	ntrol s	strateg	ies su	itable	for	spe	ecifi	сс	ont	rol		
CO4	Deter valve a par	rmine s for rticula	the dy r appl	namic icatio	cs of in n.	ndusti	rial ec	lnib:	me	nt a	nd	cho	008	se cont	rol
CO5	Sum	marize	the co	oncept	s of di	igital p	proces	s co	ntr	ol.					
					CO - I	PO MA	PPING								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PC)9	PO	10	PO11	PO12
CO1	3	3	3	3											
CO2	3	3	3	3		2	2								
CO3	3	3	3	3											
CO4	3	3	3	3											
CO5	3	3	3	3											
					Assessi	ment I	atteri	1 	1						
Dlag	à C			Conti	nuous	Asses	sment		ls	_		En	d S	Semeste	er
		ategory	/	Tes	tl	Tes	t 2	toc	ler ols			Ex	an	ninatio	n
Remem	ber			~		V	/	V	/					/	
Unders	Understand			v		V		V	/					v	
Apply				V		V		V						V	
Fyalua	; to							V	/	-					
Create								•	/						
	Mark Distribution of CIA														

Course Structure	Attendance	Th	Total		
[L-T-P-J]		Assignment	Test-1	Test-2	Mark

					S
4-0-0-0	5	15	10	10	40

SYLLABUS

MODULE I: Open loop and closed loop systems(9 hours)

Open loop and closed loop systems: Importance of modelling for process control - the

input-output model, degrees of freedom, input-output model and degrees of freedom in a stirred tank heater. Open loop and closed loop response of LTI systems - Characteristics of second order underdamped step response, Different modes of controllers - P, PI and PID, closed loop response of first and second order systems, Performance criteria of controllers - the error performance indices. Introduction to multivariable control systems, interaction in MIMO systems. Introduction to state space analysis, Definitions of state space, State variables and equilibrium points, representations of systems described by differential equations and transfer functions in state variable form.

MODULE II: Stability Analysis(8 hours)

Stability Analysis: Routh Hurwitz criteria, Bode diagrams, Bode stability criterion, gain margin and phase margin, Nyquist plots – stability analysis using Nyquist stability criteria, Controller tuning - Ziegler-Nichols settings, Cohen-Coon tuning

methods, Relay tuning.

MODULE III: Advanced Control Strategies(8 hours)

Advanced Control Strategies: cascade control, ratio control, feed forward control, adaptive control, selective control, inferential control, Smith

predictor. Introduction

to Model predictive control, PLC and SCADA.

MODULE IV: Process Applications

Process applications: Control valves — characteristics, sizing and valve positioners.

Process identification using Process reaction curve- semi log plot method, First order

plus time delay models, Approximation of multi-capacity systems to FOPTD by Skogestad's half rule. Theoretical analysis of complex processes -Dynamics of two plate gas absorber and double pipe heat exchanger.

MODULE V: Sampled Data Control Systems

Sample Data Control systems: Sampling continuous signals, ADC and DAC, Reconstruction of continuous signals from discrete time values, Zero order and first order holds, Basic review of Z transforms, Properties of Ztransforms, inversion of Z-transforms, Response of discrete systems to various inputs - Open loop response to step and impulse inputs, Discrete time analysis of continuous time systems – The Pulse transfer function, Transient response of closed-loop sampled data systems- servo and regulatory problems, mapping, Stability analysis of discrete time systems – stability regions in S and Z planes, Digital approximations of PI and PID controllers.

Text books

- 1. Coughanowr D.R, Stevan E. LeBlanc Process Systems Analysis & Control, Third Edition, McGraw Hill.
- 2. Stephanopoulos G., Chemical Process Control, An Introduction to Theory & Practice, Prentice Hall of India.
- 3. Dale E. Seborg, Thomas F. Edgar and Duncan A. Mellichamp, Process Dynamics and Control, John Wiley& Sons Inc. Second Edition.
- 4. Katsuhiko Ogata, State space analysis of control systems, Prentice Hall.
- 5. Kuo,B.C, Analysis and synthesis of sampled data control systems, Prentice –Hall.

- 1. C.A. Smith and A.B. Corripio. 'Principle and Practice of Automatic Process Control', 3rd Edition., John Wiley and Sons, 2005.
- 2. W.L. Luyben, Process modeling, Simulation and Control for Chemical Engineers, McGraw Hill.
- 3. Eckman D.P., Principles of Industrial Process Control, John Wiley & Sons Inc, NY, 1946.
- 4. Harriot P., Process Control, Tata McGraw Hill.
- Ceaglske N.H., Automatic Process Control for Chemical Engineers, John Wiley & Sons, NY, 1956.
 COURSE CONTENTS AND LECTURE SCHEDULE

	COURSE CONTENTS AND LECTORE SCHEDULE	
No.		No. of Hours
	MODULE I	
1.1	Open loop and closed loop systems: Importance of modelling for process control, Input-output model, degrees of freedom	1
1.2	Input-output model and degrees of freedom in a stirred tank heater.	1
1.3	Characteristics of second order underdamped step response.	1

1.4	Different modes of controllers - P, PI and PID,	1
1.5	closed loop response of first and second order systems, offset,	1
	integral wind up, derivative kick.	
1.6	Performance criteria of controllers — the error performance	1
	indices.	
1.7	Introduction to multivariable control systems, interaction in	1
	MIMO systems.	
1.8	Introduction to state space analysis, Definitions of state space,	1
	State variables and equilibrium points.	
1.9	Representations of systems described by differential equations	1
	and transfer functions in state variable form.	
	MODULE II	
2.1	Stability Analysis: Routh Hurwitz criteria.	1

2.2	Bode diagrams.	1
2.3	Bode stability criterion, gain margin and phase margin.	1
2.4	Nyquist plots.	1
2.5	Stability analysis using Nyquist stability criteria.	1
2.6	Controller tuning - Ziegler-Nichols settings.	1
2.7	Controller tuning - Ziegler-Nichols settings.	1
2.8	Cohen-Coon tuning methods, Relay tuning.	1
	MODULE III	
3.1	Advanced Control Strategies-Introduction.	1
3.2	Cascade control.	1
3.3	Cascade control.	1
3.4	Feed forward control.	1
3.5	Ratio control.	1
3.6	Smith predictor.	1
3.7	Inferential control, Adaptive control, selective control.	1
3.8	Introduction to Model predictive control, DCS, PLC, SCADA.	1
	MODULE IV (10 hours)	
4.1	Process applications: Control valves.	1
4.2	Characteristics, sizing.	1
4.3	Valve positioners.	1
4.4	Process identification using Process reaction curve.	1
4.5	First order plus time delay models (FOPTD), Skogestad's half	1
	rule.	

4.6	Theoretical analysis of complex processes - Dynamics of two plate gas absorber.	1
4.7	Theoretical analysis of complex processes - Dynamics of two plate gas absorber.	1
4.8	Theoretical analysis of complex processes - Dynamics of two plate gas absorber.	1
4.9	Dynamics of double pipe heat exchanger.	1
4.10	Dynamics of double pipe heat exchanger.	1
	MODULE V (10 hours)	

5.1	Sample Data Control systems: Discrete time control loops, ADC and DAC.	1
5.2	Sampling and signal reconstruction, zero order and first order hold elements aliasing, guidelines for selecting sampling period.	1
5.3	Basic review of Z transforms, Properties of z-transforms.	1
5.4	Inversion of z-transforms, difference equation to z- transform conversion.	1
5.5	Discrete time analysis of continuous time systems -The Pulse transfer function.	1
5.6	Open loop response to various inputs - step and impulse inputs.	1
5.7	Transient response of closed-loop sampled data systems.	1
5.8	Servo and regulatory problems.	1
5.9	Stability of discrete time systems – mapping from s to z	1
5.10	Digital approximations of PI and PID controllers.	1

	CO Assessment Sample Questions
1	 Consider a process Gp = 0.2/(-s+1), that is open loop unstable. If Gv = Gm = 1, determine whether a proportional controller can stabilize the system. Write short note on the error performance indices method for
	controller efficiency.
2	 Using Nyquist stability criterion, investigate the closed-loop stability of a system whose open-loop transfer function is given by, G(s)H(s) = (s+2) / (s+1)(s-1)
	2. Calculate the value of gain Kc needed to produce continuous oscillations in the control system shown below, when a) n is 2 and b) n is 3 without using graph.

	$R \xrightarrow{+} K_{c} \xrightarrow{2} (2s+1)^{n} \xrightarrow{C} C$
3	 Explain the main features of Smith predictor controller with an example. In a fluidized bed combustor, the fuel to air percentage is to be strictly maintained as 75%, write the main features of the advanced controller suitable for this purpose.
4	 Describe the equal percentage valve giving emphasis to characteristics and sizing ranges. What are the benefits of equal percentage valve? Derive the transfer function for two-plate gas absorber stating clearly the assumptions involved.
5	1. For the sample data process in figure determine (a) C(z) and b c(nT) for several values of n. $f(t) = tu(t) \xrightarrow[ramp]{t=1} \underbrace{1-e^{-T_s}}_{T=1} \underbrace{1}_{s+1} \underbrace{1-e^{-T_s}}_{T=1} \underbrace{1}_{s} \underbrace{C}_{T=1} c^*$

SEVENTH SEMESTER MINOR

								L	T	P	J	S	С	Yea	ar of
24CH	M709			PROJECT									Introd	luction	
								0	0	0	4	0	4	20	24
Pream funda: their s an opp solutio preser	Preamble: Project in minor focuses on strengthening the understanding of student's fundamental concepts through the application of theoretical concepts and to boost their skills and widen the horizon of their thinking in research. The course will provide an opportunity to identify technology/research gaps and propose innovative/creative solutions. The course will develop skills in doing literature survey, technical presentation and report preparation.														
Prereq	uisite: 1	Nil													
Course	e Outco	mes: A	After th	e com	pletion	of the	course	the	stu	dent	wil	l be	ab	ole to	
CO1	Anal and i	yze ex dentif	tisting y resea	literatı arch ga	are in t ps for	the cho further	osen fie r investi	ld o gati	r co on	nduo	ct n	leed	ba	ased an	alysis
CO2	Conc	eive a	resear	ch sta	tement	and fo	ormulat	e re	sea	rch d	obje	ctive	es.		
CO3	Desig key v addro	gn an variab ess th	d imp les, exper e resea	lemen riment irch qu	t a we hypo al/ana iestions	ll-stru theses alytica s	ctured 1	res	ear	ch p	lan an me	i, oi d etho	ıtli ds	ining tl requi	ne red to
CO4	Inter	pret re	esults o	effectiv	ely to c	lraw m	neaning	ful c	conc	lusic	ns				
CO5	Prepa	are a t	echnic	al repo	ort and	make	effectiv	e pr	eser	ntatio	ons				
					CO -	PO M	APPING	ř							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	08	PO	9	POI	10	PO11	PO12
CO1	3	3	-	2	-	-	-	3	3	3		-		-	3
CO2	3	3	-	3	-	-	-	-	-	3		-		-	3
CO3	3	3	3	3	1	-	-	•	-	3		3		2	3
CO4	3	2	3	-	-	-	-	-	-	3		3		-	3
CO5	3	-	-	-	-	-	-	3	3	3		3		-	-
					Asses	sment	Patter	n							
Blog	m's Ca	ategor	77			Con	tinuou	s as	ses	smer	nt te	ools			
Diot	500	licgoi	y	Evaluation 1 Ev			Evaluation 2 Evaluation			lation 3	3				
Remen	nber														
Under	Understand				v		~	,		<i>v</i>					
Apply					✓		v		V						
Analys	se				V V V										
Evalua	Evaluate 🖌 🖌														
Create															

Mark Distribution of CIA

Course Structure [L-T-P-J]	Project guide	Interim Evaluation	Draft Report	Final Report	Final Evaluation	Total Marks
0-0-0-4	25	25	5	10	35	100

Total Mark distribution						
Total Marks	CIA (Marks)					
100	100					
General guidelines						

• Choosing a topic

Project in minor shall be executed as a group activity where each group can have a maximum of four students and shall identify a topic of interest in consultation with Project Coordinator. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design / fabrication / synthesis / analysis / development of codes or programs to achieve the objectives.

• Evaluation pattern

The progress of the Project is evaluated based on three reviews, two interim reviews and a final review. Students must submit a report during the final review. Credits can be assigned to a student for project if he/she earns a pass grade in the final review.

• Evaluation committee

Continuous Internal Evaluation (CIE) Committee shall comprise of three members. Guide shall be one member in the CIE committee. Final Evaluation Committee shall comprise of three members- department project coordinator, guide and a member

nominated by Head of the Department.

EIGHTH SEMESTER
24CHD804		L	т	Р	J	s	С	Year of Introduction
/ 24CHN804	PROJECT/INTERNSHIP	0	0	12	0	12	6	2024

Preamble: The objective of the course is to evoke innovation and invention skills in students to solve real-world problems by applying knowledge across domains. Through thorough studies and execution, the project intends to provide meaningful insights into the identified problem and interpretation of results. The project will provide an opportunity to find viable solutions or to develop products, processes, or technology for civil engineering applications.

Prerequisite:	Nil
---------------	-----

Course Outcomes: After the completion of the course the student will be able to
 CO1 Analyze existing literature in the chosen field or conduct need-based analysis

and identify research gaps for further investigation.

CO2 Conceive a research statement and formulate research objectives.

CO3 Design and implement a well-structured research plan, outlining the key

variables, hypotheses and experimental/analytical methods required to address the research questions.

- **CO4** Interpret results effectively to draw meaningful conclusions.
- **CO5** Write technical reports by following the rules of scientific writing and deliver
 - well-structured technical presentations

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	3	3	-	-	3
CO2	3	3	-	3	-	-	-	-	3	-	-	3
CO3	3	3	3	3	1	-	-	-	3	3	2	3
CO4	3	2	3	-	-	-	-	-	3	3	-	3
CO 5	3	-	-	-	-	-	-	3	3	3	-	-

Assessment Pattern									
Bloom's Category	Continuous assessment tools								
Bioonii's Category	Evaluation 1	Evaluation 2	Evaluation 3						
Remember									
Understand	\checkmark	\checkmark	\checkmark						
Apply	\checkmark	\checkmark	\checkmark						
Analyse	\checkmark	\checkmark	\checkmark						

Evaluate	\checkmark	\checkmark
Create		

Mark Distribution of CIA										
Course Structur e [L-T-P-J]	Project Guide	Interim Evaluation	Final Evaluatio n	Draft Report	Final Report	Poster	Tota 1 mar k			
0-0-12-0	25	20	30	5	15	5	100			

Total Mark distribution								
Total Marks	CIA (Marks)							
100	100							
General guidelines								

- The research-based project in the seventh semester shall be continued as the project in the eighth semester
- One-third of the project shall be completed in the VII semester and two-third in the VIII semester.

Choosing a topic

The project shall be executed as a group activity where each group can have a maximum of four students on the topic selected for the course researchbased project in the seventh semester in consultation with the Project Coordinator. An in-depth study pertaining to the chosen objectives and a methodology to achieve the objectives is expected from students.

Carry out the design/fabrication/synthesis/analysis/development of codes or programs to achieve the objectives.

Internship

- The students can opt internship during the eighth semester which shall also be treated as their project in the eighth semester and shall be evaluated in the same pattern. The minimum duration of such internships shall be 3 months and above and to be approved by the concerned department. Students who opt for this internship can avail of MOOCs or follow self-study mode to meet the credit requirements of the courses in the eighth-semester course mentioned in the curriculum. In such cases, the statement of attendance from the organization where the student pursued his/her internship will be treated as an attendance requirement for internal assessment and end-semester examinations. If the student is permitted to follow self-study mode, he/she is liable to meet all the requirements such as attending internal exams and submitting the assignments and other works given by the course tutor in time.
- Students who opted for internship in the eighth semester have to attend the interim and final project evaluation, by submitting the internship report. Internal internship supervisor shall be a member of the project evaluation committee along with other project evaluation committee members, it is desirable that

external supervisor from industry also shall be a member of the evaluation

committee of such students along with other project evaluation committee members.

- The students can undertake projects in Central/State PSUs, Government/LSG Departments, and Private Sector industries. The following Government sector institutions can be opted by the students.
- Internships offered by Maharatna, Navaratna & Miniratna CPSEs.
- Internships offered by institutions of national importance.
- Internships offered by the Department of Science and Technology (DST), Council of Scientific & Industrial Research (CSIR), and the Department of Biotechnology (DBT) laboratories.
- Internships offered by the Indian Space Research Organization (ISRO), Defence Research and Development Organization (DRDO), Bhabha Atomic Research Centre (BARC), Hindustan Aeronautics Limited (HAL) and Tata Institute of Fundamental Research (TIFR).
- Generalized points that need to be taken care of by the students during the report preparation of in-plant training (internship in Chemical Industries) are:
 - Company Profile, List of Raw Materials/Products, etc. of the industry & production capacity
 - P & I Diagram, Process Flow Diagram
 - Chemical Reactions involved, Unit Operation & Processes Involved
 - Energy & Material Balance Calculations
 - Process and mechanical design of atleast one equipment (Reactor/Storage Tank/Heat Exchange

Equipment/Distillation

Column/Absorber/stripper/Cooling Tower, etc.)

- Treatment & handling of various waste materials which may include liquid effluent handling, air pollution control measures, and solid waste handling and disposal.
- Safety measures of the plant site: Process safety, PPEs, color coding & Symbols, types of permits, Fire Extinguishers, etc.

Evaluation pattern

The progress of the Project is evaluated based on three reviews, two interim reviews and a final review. Students must submit a report during the final review.

All students doing a project in the eighth semester shall prepare a poster as part of their project highlighting their work. The poster carries 5% weightage of the total marks of the project course and to be prepared based on the guidelines issued time to time.

Evaluation Committee

The Continuous Internal Evaluation (CIE) Committee shall comprise of three

members. The guide shall be one member of the CIE committee. The final Evaluation Committee shall comprise of three members - department project coordinator, guide, and a member nominated by the Head of the Department.

Evaluation by the Guide

The guide/supervisor must monitor the progress being carried out by the project groups on regular basis. In case it is found that progress is unsatisfactory it should be reported to the Department Evaluation Committee for necessary action. The presence of each student in the group and their involvement in all stages of execution of the project shall be ensured by the guide.

This evaluation by the guide should be done by considering the following aspects:

- Project Scheduling & Distribution of Work among Team members: Detailed and extensive scheduling with timelines must be provided for each phase of the project. The breakdown of work structure must be well defined.
- Student's Diary/ Daily Log: The main purpose of writing daily diary is to cultivate the habit of documenting and to encourage the students to search for details. It develops the students' thought process and reasoning abilities. The students should record in the daily/weekly activity diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. It should contain the sketches & drawings related to the observations made by the students. The daily/weekly activity diary shall be signed after every day/week by the guide.
- Individual Contribution: The contribution of each student at various stages should be documented.
- Completion of the project: The students should demonstrate the project to their respective guide. The guide shall verify the results and see that the objectives are

met.

EIGHTH SEMESTER PROFESSIONAL ELECTIVE-4

24CHI	2811	PROC	CESS D	ESIGN	FOR	L	Т	Р	J	S	С	Ye Intro	ar of luction
		POLL	UTION	CONT	ROL	3	0	0	0	3	3	20)24
Preamble: The objective of the course is to impart knowledge in various													
polluti	on pr	eventi	ion ar	nd cor	ntrol te	echni	ques	. Tł	ne c	ours	e conte	ent in	cludes
Enviro	nmen	ital re	gulatio	ons, d	efinitic	on of p	ollu	tant	, ty	pes o	of pollu	tion, p	rocess
design	of v	vater	pollu	tion c	control	equ	pme	nts,	pr	oces	s desi	gn of	water
polluti	on c	bio m	equi	ipmen	its, pi	rocess	de	sign	. 01	air	pollu	tion	control
Prereat	nisite.	Nil	icuicai	wasii									
Course	= 011tc	nmes	• After	the c	mnlet	ion o	fthe	011	rse	the s	tudent	will he	ahle
to	Could	,0111C3	. 11101		Jinpiet			cou	130		luuciit		abic
CO1	Stat	e vario	ous en	viron	mental	laws	and	reg	ulat	ions	aimed	at the	
	prot	ection	of					0					
	the e	enviro	nmen	t									
CO2	Sum	ımariz	e vari	ous w	ater an	nd air	pollı	ation	n sta	anda	rds		
CO3	Desi	gn wa	ter, ai	r, and	biome	dical	pollu	tior	l co	ntrol	system	IS	
CO4	Sele	ct and	use a	suita	ble trea	atmer	t tec	hnic	que	for b	iomedio	cal was	ste
					CO - P	O MAF	PING						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9	PO10	PO11	PO12
CO1	3	3				2	2						
CO2	3	3				2	2						
CO3	3	3	2			2	2						
CO4	3	3				2	2						
					Assessm	nent P	atter	n					
				Conti	nuous A	Assess	nent	Тоо	ls		End S	emeste	r
Bloc	om's Ca	ategor	У	Tes	t1	Test	: 2	Oti to	her ols		Exan	ninatio	n
Remen	Remember			~		V	'	١	/			/	
Unders	stand			~		V	'	6	/			~	
Apply				~		V	'	6	/	 ✓ 			
Analys	e							6	/				
Evalua	ıte							6	/				
Create								6	/				

Mark Distribution of CIA									
Course		Th							
Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks				
3-0-0-0	5	15	10	10	40				

Total Mark distribution								
Total Ma	rks	CIA (Marks)	ESE (Marks)	ES	SE Duration			
100		40	60		3 hrs			
End Semester	Examin	nation [ESE]: Patte	ern					
PATTERN		PART A	PART B		ESE Marks			
PATTERN 1	10 (ques mar Mar mar	Questions, each stion carries 2 ks ks: (2x10 =20 ks) l Marks: 20	2 questions will be from each module, ou which 1 question sho be answered. Ea question can have maximum of 2 s divisions. Each question carrie marks. Marks: (5x8 = 40 mark Time: 3 hours Total Marks: [5x8 = marks]	given t of ould ach a sub s 8 s 8 cs) 40	60			

SYLLABUS

MODULE I : Prevention vs control of industrial pollution

Prevention vs control of industrial pollution, Environment policies and Regulations to encourage pollution prevention, Environment friendly chemical processes, Regulations for clean environment and implications in industries

MODULE II : Type of pollutants and standards

Definition of pollutant, types of pollution; Air, Water, Land, noise- adverse effects of pollutants, eco system and human health - need for effluent treatment and toxicity, control. Water standards for portable, agricultural and left-off streams-air standards for cities, industrial areas, resort

MODULE III: Design of pollution control equipment : water pollution

Design of Equalization Tank, Sedimentation tank, Oil and grease removal unit, aerator and settling tank of an Activated sludge process, Trickling filter, secondary clarifier, Design of Rotating Biological Contactor.

MODULE IV: Design of pollution control equipment: water pollution

Design of Oxidation pond and Oxidation Ditch, Anaerobic Filter, Two step Anaerobic Digestion System ,Design of Sludge Digester and Sludge Thickener, Air stripping tower

MODULE V: Design of pollution control equipment: air pollution

Process design of cyclone separators, fabric filters and Electrostatic precipitators, Baghouses, gravity settler, SO₂ Scrubbers Scrubbers. Characterization of medical waste- Bio-medical wastes, biomedical waste categories. Process design of Incinerator

Text books

- 1. Freeman.H.M, "Industrial Pollution Prevention Hand Book", McGraw Hill,1995
- 2. Ray T.K., " Air Pollution Control in Industries", Volume I, TBI, New Delhi

- 1. C S Rao, Environmental Pollution Control Engineering, New age International
- 2. C. C. Lee, Shun Dar Lin, Handbook of Environmental Engineering Calculations,
- 3. Second Edition, McGraw Hill
- 4. S.P.Mahajan Pollution Control in process industries, Tata McGraw Hill, 1990Connwell & Devis, Introduction to Environmental Engineering, TMH.
- 5. Frank R. Spellman, Handbook of Water and Wastewater Treatment Plant Operations, CRC Press
- 6. Metcalf & Eddy, Wastewater Engg. TMHS.J.Arceivala, Wastewater treatment for pollution control, TMH

	COURSE CONTENTS AND LECTURE SCHEDULE							
No.		No. of Hours						
	MODULE 1 (6 hours)							
1.1	Prevention vs control of industrial pollution	1						

1.2	Environment policies and Regulations to encourage pollution	1
	prevention	
1.3	Environment policies and Regulations to encourage pollution	1
		1
1.4	Environment friendly chemical processes	1
1.5	Environment friendly chemical processes	1
1.6	Regulations for clean environment and implications for industries	1
	MODULE II (6 hours)	
2.1	Definition of pollutant, types of pollution; Air, Water, Land, noise	1
2.2	adverse effects of pollutants ecosystem and human health	1
2.3	need for effluent treatment and toxicity control.	1
2.4	Water standards for portable, agricultural and left-off streams-	1
2.5	Water standards for portable, agricultural and left-off streams-	1
	an standards for cities, industrial areas, resort	
2.6	Water standards for portable, agricultural and left-off streams-	1
	air standards for cities, industrial areas, resort	
	MODULE III (8 hours)	
		1
3.1	Design of Equalization Tank	1
3.2	Sedimentation tank,	1
3.3	Oil and grease removal unit,	1
3.4	aerator and settling tank of an Activated sludge process	1
3.5	aerator and settling tank of an Activated sludge process	1

3.6	Trickling filter, secondary clarifier	1	
3.7	Design of Rotating Biological Contactor	1	
3.8	Design of Rotating Biological Contactor.	1	
	MODULE IV (8 hours)		
4.1	Design of Oxidation pond and Oxidation Ditch	1	
4.2	Design of Oxidation pond and Oxidation Ditch	1	
4.3	Anaerobic Filter	1	
4.4	Two step Anaerobic Digestion System	1	
4.5	Two step Anaerobic Digestion System	1	
4.6	Design of Sludge Digester and Sludge Thickener	1	
4.7	Design of Sludge Digester and Sludge Thickener	1	
4.8	Air stripping tower	1	
	MODULE V (8 hours)		
5.1	Process design of cyclone separators	1	
5.2	Process design of cyclone separators	1	
5.3	fabric filters and Electrostatic precipitators	1	
5.4	Baghouses, gravity settler	1	
5.5	SO ₂ Scrubbers Scrubbers	1	
5.6	characterization of medical waste- Bio-medical wastes, biomedical waste categories.	1	
5.7	Process design of Incinerator	1	
5.8	Process design of Incinerator	1	

	CO Assessment Questions						
1	Explain the important toxic components in industrial effluents and their control methods						
2	Explain the quality standards for potable water						
3	Calculate the sludge digester capacity required for the single stage floating cover sludge digester for the sewage treatment of a city, with the following data: Population equivalent=7,000 Loading rate= 0.09 kg/capita/day Volatile solids in the raw sludge = 70 per cent Moisture content of raw sludge = 96 per cent Digestion period = 25 days Volatile solids reduction during digestion = 50 per cent Moisture content of digested sludge= 92 per cent Storage period required for the digested sludge = 90 days Design an oxidation pond for treating sewage from a hot climatic residential colony with 5000 persons, contributing sewage at 120 litres per capita per day (LPCD). The 5-day BOD of sewage is 300 mg/L						
4	Write the design features of a Biomedical Incinerator along with its neat sketch.						

24CHE821 RES		RESC	CUE AND DISASTER			L	Т	Р	J	S	С	Yea Introd	ar of action		
				MANAGEMENT			3	0	0	0	3	3	20	24	
Pream	ble: T	he cou	irse is	inten	ded to	provi	de a ge	ener	al o	con	cep	t ir	n th	le dime	ensions
of															
disast	ers ca	used b	oy nat	ure be	eyond	the hu	ıman	con	trol	as	we	11 a	as t	the disa	asters
and e	nviron	menta	al haz	ards i	nduce	ed by	huma	n a	ctiv	vitie	es v	vit	hε	emphas	sis on
rescue	e, disa	ster pi	repare	dness	, respo	onse a	nd rec	ove	ry.						
Prereq	uisite:	Nil										_			
Cours	e Outo	comes	s: After	the c	omple	tion of	the co	ours	se t	he s	stuc	ler	it w	vill be a	ble to
CO1	Exp	lain tl	he imp	oortan	ce of c	lisaste	er man	age	me	nt					
CO2	Sun	nmari	ze the	variou	ıs risk	c analy	zsis te	chn	iqu	es					
CO3	Exp	lain tl	he nee	d for d	lisaste	er prep	paredn	ess							
CO4	Exp	lain tl	he var	ious n	ieasur	res of a	rescue	in	diff	ere	nt s	sce	nar	rios	
					CO -	PO MA	PPING	•							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	D8	PC)9	PO	10	PO11	PO12
CO1	3	3				2	2								
CO2	3	3				2	2								
CO3	3	3				2	2								
CO4	3	3				2	2								
				1	Assess	ment	Patter	n							
				Conti	inuou	s Asse	ssmen	t To	ools	5		Er	hd 9	Semest	er
Blo	om's C	Catego	ory	Tes	t1	Tes	st2	Otl too	ner ols			E	xar	ninatio	on
Remer	nber			~		v	•	V	/					~	
Under	stand			V		V	•	V	/	v					
Apply				V		V	•	V	/	v					
Analys	se							V	/						
Evalua	ate							V	/						
Create								V	/						
				M	ark Di	stribut	ion of (CIA							

	Attendance	The			
Course Structure [L-T-P-J]		Assignment	Test-1	Test-2	Total Marks

2-1-0-	-0	5	15	10 10			40		
Total Mark distribution									
Total Marks CIA (Marks) ESE (Marks) ESE Durat									
100		40	60)		3 hr	S		
End Semeste	r Exam	ination [ESE]: P	attern						
PATTERN		PART A	PA	RT B		ESE	Marks		
PATTERN 1	10 Q each quest Mark mark	Questions, tion carries 2 marks s: (2x10 =20 s) Marks: 20	2 questions from each module 1 question s answered. E can have a sub division quest marks. Marks: (5x8 Time: 3 hour Total Mark marks]	ESE Marks 60					
		SY	LLABUS						
MODULE I	Intro	luction (5 hours)							
Definitions:- Hazard, Risk, Vulnerability, Disaster-Meaning, Nature									
Managemer	t Cvcl	e. The Disaster	Management	Act 2005	anagen	ient;	Disaste		
MODULE II	: Risk	Assessment & R	eduction (10 h	ours)					
Risk analys	is tech	niques; Process nt. Natural ha	s of Risk asse	ssment, A	nalytic Und	al sys erstar	tems		

Risk analysis techniques; Process of Risk assessment, Analytical systems for risk assessment, Natural hazard/ risk assessment, Understanding climate risk, Mapping of risk assessment, Decision making for risk reduction, Problems in risk assessment Participatory risk assessment -Rationale for people's participation, Role of civil society organizations, Impact of Globalization, Activities and roles for the community action Risk reduction, Participatory risk assessment methods

MODULE III : Disaster Preparedness (5 hours)

Disaster Preparedness: concept and significance Measures, Institutional Mechanism, Disaster preparedness with special needs/ vulnerable groups, Policy and Programmes

MODULE IV : Introduction to rescue (9 hours)

Introduction To Search Technique, Correct Method Of Searching A Room, Factors Influencing Search & Rescue, Types Of Searches, Factors While Searching, Rescue Technique, Shelter In Place, Exit Assist, Rescue By Fireman, Fireman's Lift, Rescue Using Fire Services Equipments, Ladders And Hydraulic Platforms, Requisite Qualities Of Rescuer, Different Rescue Scenarios.

MODULE V: Various Rescues Scenarios (7 hours)

Rescue In Mines And Shafts, Road Accident (Highway) Rescue, Rescue From High Rise Buildings, Rescue Using Chair Knot, Collapse Of Building/ Judgment Of Collapse, Precautions While Rescue, Rescue Problems In Case Of High Rise Building, Rescue In Case Of Poisonous Gas Leak, Rescue In Sewer Line, Rescue In Case Of Electrical Appliances.

Text books

- 1. Carter, W. Nick, 1991. Disaster Management: A Disaster Manager's Handbook, Asian Development Bank, Manila
- 2. Green Stephen. 1980. International Disaster Relief: Towards A Responsive systems, Mc Graw Hill Book Company, New York.
- 3. Prakash, Indu , 1995, Disaster Management, Rashtra Prahari Prakashan, Gaziabad

- 1. Elementary principles of rescue by Got. Of India, ministry of Home Affairs
- 2. Rescue Service Manual by HMSO
- 3. Rescue Civil defense handbook by HMSO
- 4. Penn Well, "Technical rescue operation", volume- II; Larry Collins COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours					
	MODULE 1						
1.1	Definitions:- Hazard, Risk, Vulnerability	1					
1.2	Disaster-Meaning, Nature Importance	1					
1.3	Dimensions and scope of Disaster Management	1					

1.4	Disaster Management Cycle	1					
1.5	The Disaster Management Act 2005	1					
	MODULE II						
2.1	Risk analysis techniques; Process of Risk assessment	1					
2.2	Analytical systems for risk assessment	1					
2.3	Natural hazard/ risk assessment, Understanding climate risk	1					
2.4	Mapping of risk assessment, Decision making for risk reduction	1					
2.5	Problems in risk assessment Participatory risk assessment - Rationale for people's participation	1					
2.6	Role of civil society organizations, Impact of Globalization	1					
2.7	Activities and roles for the community action Risk reduction	1					
2.8	Activities and roles for the community action Risk reduction	1					
2.9	Participatory risk assessment methods	1					
2.10	Participatory risk assessment methods	1					
	MODULE III						
3.1	Disaster Preparedness: concept and significance Measures	1					
3.2	Disaster Preparedness: concept and significance Measures	1					
3.3	Institutional Mechanism	1					
3.4	Disaster preparedness with special needs/ vulnerable groups	1					
3.5	Policy and Programmes	1					

MODULE IV					
4.1	introduction to search technique	1			
4.2	correct method of searching a room	1			
4.3	factors influencing search & rescue, types of searches, factors while searching, rescue technique	1			
4.4	factors influencing search & rescue, types of searches, factors while searching, rescue technique	1			
4.5	shelter in place, exit assist	1			
4.6	rescue by fireman, fireman's lift	1			
4.7	rescue using fire services equipments	1			
4.8	ladders and hydraulic platforms, requisite qualities of rescuer	1			

4.9	different rescue scenarios	1
	MODULE V1	
5.1	rescue in mines and shafts	1
5.2	road accident (highway) rescue	1
5.3	rescue from high rise buildings	1
5.4	rescue using chair knot, collapse of building/ judgment of collapse	1
5.5	rescue problems in case of high rise building,	1
5.6	rescue in case of poisonous gas leak, rescue in sewer line	1
5.7	rescue in case of electrical appliances.	1

CO Assessment Sample Questions						
1	Explain the scope of disaster management.					
2	List the components of risk assessment. Explain the contemporary approaches to risk assessment					
3	Explain the institutional mechanism for disaster preparedness.					
4	Explain the rescue operation to be carried out for disaster in mines.					

24CHE831	STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS	L	Т	Р	J	S	С	Year of Introduction
		3	0	0	0	3	3	2024

Preamble: Students, researchers, and engineers want to analyze the experimental data scientifically and rigorously and communicate the outcomes in reports, theses, or publications unambiguously. From a basic knowledge of calculus, linear algebra, probability, and statistics the course enables the participants to acquire knowledge and skills in statistical data analysis and design of experiments. The course will introduce essential tools for data analysis by discussing popular probability distributions, the concept of random samples, linear regression, and hypothesis testing. The course is planned to provide an overview of factorial design, orthogonal designs, higher-order designs, and guidelines for selecting the most appropriate design for an experiment.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

- **CO2** Analyze the data using descriptive statistics.
- **CO3** Distinguish the properties and applications of important statistical distributions.
- **CO4** Analyze the data using inferential statistics.
- **CO5** Develop and interpret the linear regression analysis.
- **CO6** Compare different experimental design strategies.

CO - PO MAPPING												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		3	3							
CO2	3	3		3	3							
CO3	3	3		3	3							
CO4	3	3		3	3							
CO5	3	3		3	3							
CO6	3	3		3	3							
					Accor		Datta					

Assessment Pattern										
	Continuo	us Assessment	Fnd	Somostor						
Bloom's Category	Test1	Test 2	Other tools	Ena	mination					
Remember	v	 ✓ 	v		v					
Understand	v	 ✓ 	v		v					
Apply	v	 ✓ 	v		v					
Analyze			v							
Evaluate			v							
Create			v							
Mark Distribution of CIA										
Course Structure	Attondonoo	Th	eory [L- T]		Tetal Maria					
[L-T-P-J]	Attenualice	Assignment Test-1		Test-2	i otai Marks					

3-0-0-	0	5	15	10	10	40					
Total Mark distribution											
Total MarksCIA (Marks)ESE (Marks)ESE Duration											
100		40		50		3 Hrs					
End Semester	Examin	ation [ESE]: Patte	ern								
PATTERN		PART A		PART B		ESE Marks					
PATTERN 1	10 Q quest marks Marks marks	uestions, each ion carries 2 s :: (2x10=20	2 questi from each mod 1 ques answered can have subdivisi Each qu marks. Marks: (5 Time: 3 h	be given of which ould be question num of 2 carries 8 narks)	60						
	Total	Marks: 20	Total Ma marks]	rks: [5x8	= 40						

SYLLABUS

MODULE I: Graphical representation of data (8 Hrs)

Bar Charts, Histograms, dot plot, Pie Charts, Scatter Plots, Line Charts, Bubble Plots, box and whisker plots, Interval plots, stem and leaf plots. Descriptive statistics: Mean, Standard Error, Median, Mode, Standard Deviation, Sample Variance, Kurtosis, Skewness, Confidence Level, Quartile, Percentile Development and interpretation of the above terms in any of the software's (say, MS Excel, Matlab, R, etc., Not for End semester examination)

MODULE II: Probability and statistical distributions (7 Hrs)

Probability and statistical distributions: Probability, Properties and applications of important statistical distributions such as normal, lognormal and t-distributions, Chi-Square and F distributions Development and interpretation in any of the softwares (say, MS Excel, Matlab, R etc., Not for End semester examination)

MODULE III: Hypothesis Testing (7 Hrs)

Hypothesis Testing: Formulation of null and alternate hypotheses, errors in hypothesis Tests, power of hypothesis tests, hypothesis tests on population means and variances Single factor experiments: Introduction to Analysis of Variance (ANOVA), blocking and randomization. Development and interpretation in any of the softwares (say, MS Excel, Matlab, R etc., Not for End semester examination)

MODULE IV: Linear Regression Analysis & Factorial Design of Experiments (7 Hrs)

Linear Regression Analysis: Matrix approach to linear regression, ANOVA in regression analysis, quantifying regression fits of experimental data.

Factorial Design of Experiments: Need for planned experimentation, factorial design experiments involving two factors, effect of interactions, ANOVA in factorial design, general factorial design, partial factorial designs Development and interpretation in any of the softwares (say, MS Excel, Matlab, R etc., Not for End semester examination)

MODULE V: Comparison of different experimental design strategies (7 Hrs)

Comparison of different experimental design strategies: Properties of orthogonal designs, implications of different factorial design models, importance of center runs, central composite design, Box Behnken design, rotatable of experimental designs, face-centered cuboidal designs, comparison of experimental designs Development and interpretation in any of the softwares (say, MS Excel, Matlab, R etc., Not for End semester examination)

Textbooks

1. Montgomery D. C., Design and Analysis of Experiments, 8th edition, New Delhi: Wiley-India, 2011.

- 1. Statistics for Engineers and Scientists, William Navidi, 3rd Edition, McGraw Hill
- 2. Myers R. H., Montgomery D. C. and Anderson C. M., Response Surface Methodology, 3rd edition, New Jersey: Wiley, 2009.
- 3. Ogunnaike B. A., Random Phenomena, Florida: CRC Press, 2010.

COURSE CONTENTS AND EECTORE SCHEDULE							
No.		No. of Hours					
		mouro					
	MODULE 1						
1.1	Bar Charts, Histograms, dot plot, Pie Charts	1					
1.2	Scatter Plots, Line Charts, Bubble Plots	1					
1.3	Box and whisker plots, Interval plots, stem and leaf plots	1					
1.4	Descriptive statistics: Mean, Standard Error, Median, Mode	1					
1.5	Standard Deviation, Sample Variance, Kurtosis	1					
1.6	Skewness, Confidence Level, Quartile, Percentile	1					
1.7	Exercise problems	1					
1.8	Exercise problems	1					
	MODULE II						
2.1	Introduction to Probability	1					

3.1	Hypothesis Testing: Formulation of null and alternate hypotheses	1						
	MODULE III							
2.7	Properties and applications of F distribution	1						
2.6	Properties and applications of Chi-Square distribution	1						
2.5	Properties and applications of t-distribution	1						
2.4	Properties and applications of log-normal distribution	1						
2.3	Properties and applications of normal distribution	1						
2.2	Introduction to Probability- contd.	1						

3.2	Errors in hypothesis Tests	1
3.3	Power of hypothesis tests	1
3.4	Hypothesis tests on population means and variances	1
3.5	Single factor experiments:Introduction to Analysis of Variance	1
3.6	Analysis of Variance (ANOVA) - case studies	1
3.7	Blocking and randomization	1
	MODULE IV	
4.1	Linear Regression Analysis: Matrix approach to linear regression	1
4.2	ANOVA in regression analysis,	1
4.3	Quantifying regression fits of experimental data.	1
4.4	Need for planned experimentation, factorial design experiments involving two factors	1
4.5	Factorial Design of Experiments: effect of interactions	1
4.6	ANOVA in factorial design,	1
4.7	General factorial design, partial factorial designs	1
	MODULE V	
5.1	Properties of orthogonal designs	1
5.2	Implications of different factorial design models	1
5.3	Importance of center runs	1
5.4	Central composite design and Box Behnken design	1
5.5	Rotatable of experimental designs	1
5.6	Face-centered cuboidal designs	1
5.7	Comparison of experimental designs	1

	CO Assessment Sample Questions
1	Develop the Stem-and-Leaf Plot for the following data of durations (in minutes) for completion of the reaction.
2	Find the first and third quartiles of the sample values of fracture stress (in megapascals) measured for a sample of 24 mixtures of hot-mixed asphalt (HMA). Data: 30, 75, 79, 80, 80, 105, 126, 138, 149, 179, 179, 191, 223, 232, 232, 236, 240, 242, 245, 247, 254, 274, 384, 470
3	State and explain the Central Limit Theorem
4	Give the Steps in Performing a Hypothesis Test

5	A chemical engineer is studying the effect of temperature and stirring rate on the								
	vield of a certain product. The process is run 16 times, at the settings								
	indicated in the following table. The units for vield are percent of a								
	theoretical maximum.								
		Temperature(∘C)	Stirring Boto (rpm)	Yield					
	110 30 70.27								
		110	32	72.29					
		111	34	72.57					
		111	36	74 69					
		112	38	76.09					
		112	40	73.14					
		114	42	75.61					
		114	44	69.56					
		117	46	74.41					
		122	50	79.18					
		122	52	75.44					
		130	54	81.71					
		130	56	83.03					
		143	58	76.98					
		143	60	80.99					
	(a) Comput	te the correlation be	tween temperat	ture and yi	eld, between				
	stirring	rate and yield, and be	etween temperat	ture and sti	rring rate.				
	(b) Do thes	e data provide good e	evidence that inc	creasing the	e temperature				
	causes t	he yield to increase, w	vithin the range	of the data?	Or might the				
	result b	e due to confounding?	Explain.						
	(c) Do thes	e data provide good e	evidence that inc	creasing the	e stirring rate				
	causes	the yield to increase,	within the rang	ge of the da	ta? Or might				
	the resu	ılt be due							
	to confo	unding? Explain.							
6	Differentiate	between central compo	osite design and	Box Behnke	n design of				
U	response								
	surface metho	odology.							

24CH	E841	ENHANCED OIL RECOVERY							Т	Р	J	S	С	Yea Introd	r of uction
								3	0	0	0	3	3	20:	24
Preamble: The objective of the Enhanced Oil Recovery (EOR) course is to provide students with a comprehensive understanding of advanced techniques and methodologies employed in maximizing hydrocarbon recovery from reservoirs. Students will gain insights into reservoir behavior, fluid dynamics, and the various EOR processes such as water flooding, gas injection, chemical flooding, and thermal methods. By the end of the course, students should be proficient in assessing reservoir conditions, designing EOR strategies, and making informed decisions to optimize oil recovery while considering economic and environmental factors.															
Course	outc	omes:	After	the co	mpleti	on of t	he cou	rse	th	e si	tud	len	t wil	l be able	to
C01	Expla differ	ain di rent	ifferer	it EO	R typ	es ar	nd the	eir	fu	nct	tion	18	and	l enlist	the
CO2	List	differe	nt ch	emica	sed to ls/age	evalua	sed for	r di	ffe	ren	t E	ma EOl	R te	chnique	s and
	expla	ain			, ,									-	
000	their	functi	ions ir	i enha	ancing	oil re	covery.	4				.1 .		!	
CU3	differ	ribe ti cent E	ne un OR	aeriyi	ng me	ecnani	sms tr	nat	ca	.us	e c	011 1	reco	very in	
	techr	niques						6							
CO4	Expla differ	ain th cent E	e field OR	l impl	ement	tation	and p	erfo	orn	ıar	ice	ev	ralua	ation of	
	techr	niques	•		~ ~										
	DO1	DOO	DOO	704	CO -	PO MA	APPING	r DC			20	DC	10	DO11	DO10
	2	PO2	P03	P04	P05	P06	P07	PC	18	P	09	PC	010	P011	P012
CO2	े २	$\frac{2}{2}$								-	_				
CO2	3	2								+-					
CO4	3	2								-					
	-				Asses	sment	Patter	n							
Continuous Assessment Tools															

	Continuou	s Assessme							
Bloom's Category	Test1	Test 2	Other tools	End Semester Examination					
Remember	v	 ✓ 	 ✓ 	 ✓ 					
Understand	v	 ✓ 	 ✓ 	 ✓ 					
Apply	v	 ✓ 	 ✓ 	 ✓ 					
Analyze			 ✓ 						
Evaluate			 ✓ 						
Create			 ✓ 						
Mark Distribution of CIA									

Course Structure	Attendence	Th	1 Nr 1			
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	i otai Marks	
3-0-0-0	5	15	10	10	40	

Total Mark distribution						
Total Marks CIA (Marks)			ESE (Marks)	ES	E Duration	
100 40			60	3 Hrs		
End Semester	Examin	ation [ESE]: Patte	ern			
PATTERN		PART A	PART B		ESE Marks	
PATTERN 1	ATTERN 1 Marks: (2x10=20 marks)		2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub- divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours		60	
	Total	Marks: 20	Total Marks: [5x8 = 4 marks]	10		

SYLLABUS

MODULE I: Fundamentals of EOR (7 Hrs)

Global and domestic necessity for EOR; India's EOR policy; microscopic and macroscopic displacement of fluids in reservoir; mobilization of trapped oil; mobility control; EOR performance indicators – Capillary Number, mobility ratio, breakthrough from fractional flow curves, wettability alteration from relative permeability curves; recovery factor – volumetric displacement and microscopic displacement efficiency; overview of waterflooding process; different EOR methods and its functions; EOR screening.

MODULE II: Chemical EOR Methods – I (8 Hrs)

Surfactant flooding EOR: Oil recovery mechanism by surfactants, surfactant types & its functions; CMC; microemulsion – types & its phase behavior; field implementation of surfactant flooding EOR; performance evaluation and screening of surfactants.

Polymer flooding EOR: Oil recovery mechanism by polymers; mobility control; polymer types & its behavior under reservoir conditions; field implementation of polymer flooding EOR; performance evaluation and screening of polymers for EOR. Alkaline-Surfactant-Polymer (ASP) flooding EOR: Role of alkaline in oil recovery; oil recovery mechanism and field implementation of ASP flooding EOR; performance evaluation of ASP EOR.

MODULE III: Chemical EOR Methods – II (8 Hrs)

Low salinity water flooding (LSWF) EOR: Oil recovery mechanisms – Double layer expansion, MIE process, pH alteration, fines migration, etc.; evaluation of wettability alteration from rel. permeability curves; field implementation; challenges in LSWF EOR. Microbial EOR (MEOR): Different types of microbes and bioproducts and its role in oil recovery; MEOR types and its oil recovery mechanism; field implementation and performance evaluation of MEOR; Merits and challenges in implementing MEOR.

Hybrid EOR techniques: Oil recovery mechanism of Low salinity surfactant flooding, Low salinity polymer flooding.

MODULE IV: Gas EOR Methods & CO₂ Sequestration (7 Hrs)

Gases used for EOR; Gas EOR types; MMP; immiscible gas flooding EOR; miscible flooding EOR – first contact miscibility and multiple contact miscibility – vaporization, condensation, and combined drive mechanism; ternary phase diagrams for immiscible and miscible gas flooding EOR mechanisms. Field implementation and oil recovery mechanism of continuous gas injection, CO₂ flooding, WAG, SWAG, SSWAG EOR process.

Necessity for CO_2 sequestration; CO_2 sequestration in aquifers and oil reservoirs; CO_2 trapping mechanisms – Structural, hydrodynamic, residual, dissolution, and mineral trappings. Challenges in CO_2 sequestration.

MODULE V: Thermal EOR Methods (6 Hrs)

Types of thermal EOR and its oil recovery mechanism, advantages, and constraints – Hot water flooding, steam flooding, cyclic steam flooding or huff & puff steam flooding,

steam-assisted gravity drainage, in-situ combustion oil recovery technique. Textbooks

- 1. Enhanced Oil Recovery. SPE (2018): Don W. Green and G. Paul Willhite.
- 2. Van Poollen, H.K. "Fundamentals of enhanced oil recovery", Penn Well Books, 1980.

Reference books

- 1. Fundamentals of Enhanced Oil Recovery. SPE (2015): Larry W. Lake, Russell Johns, Bill Rossen, Gary Pope.
- 2. Fundamental of enhanced oil and gas recovery from conventional and

unconventional reservoirs (2018): Alireza Bahadori.

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1	
1.1	Global and domestic necessity for EOR; India's EOR policy;	1
1.2	microscopic and macroscopic displacement of fluids in reservoir; mobilization of trapped oil; mobility control;	1
1.3	EOR performance indicators – Capillary Number, mobility ratio,	1

	breakthrough from fractional flow curves,	
1.4	wettability alteration from relative permeability curves; recovery factor – volumetric displacement and microscopic displacement efficiency;	1
1.5	overview of the waterflooding process;	1
1.6	different EOR methods and its functions;	1
1.7	EOR screening.	1
	MODULE II	
2.1	Surfactant flooding EOR: Oil recovery mechanism by surfactants, surfactant types & its functions;	1
2.2	CMC; microemulsion – types & its phase behavior; field implementation of surfactant flooding EOR;	1
2.3	performance evaluation and screening of surfactants.	1

2.4	Polymer flooding EOR: Oil recovery mechanism by polymers;mobility control;	1
2.5	polymer types & its behavior under reservoir conditions; field implementation of polymer flooding EOR;	1
2.6	performance evaluation and screening of polymers for EOR.	1
2.7	Alkaline-Surfactant-Polymer (ASP) flooding EOR: Role of alkaline in oil recovery;	1
2.8	oil recovery mechanism and field implementation of ASP flooding EOR; performance evaluation of ASP EOR.	1
	MODULE III	
3.1	Low salinity water flooding (LSWF) EOR: Oil recovery mechanisms – Double layer expansion, MIE process, pH alteration, fines migration, etc.;	1
3.2	evaluation of wettability alteration from rel. permeability curves; field implementation; challenges in LSWF EOR.	1
3.3	Microbial EOR (MEOR): Different types of microbes and bioproducts and its role in oil recovery;	1
3.4	MEOR types and its oil recovery mechanism;	1
3.5	field implementation and performance evaluation of MEOR;	1
3.6	Merits and challenges in implementing MEOR.	1
3.7	Hybrid EOR techniques: Oil recovery mechanism of Low salinity surfactant flooding, Low salinity polymer flooding.	1
3.8	Hybrid EOR techniques: Oil recovery mechanism of Low salinity surfactant flooding, Low salinity polymer flooding.	1
	MODULE IV	
4.1	Gases used for EOR; Gas EOR types; MMP; immiscible gas flooding EOR;	1

4.2	miscible flooding EOR – first contact miscibility and multiple contact miscibility – vaporization, condensation, and combined drive mechanism;	1
4.3	ternary phase diagrams for immiscible and miscible gas flooding EOR mechanisms.	1
4.4	Field implementation and oil recovery mechanism of continuous gas injection,	1
4.5	CO ₂ flooding, WAG, SWAG, SSWAG EOR process.	1
4.6	Necessity for CO_2 sequestration; CO_2 sequestration in aquifers and oil reservoirs;	1
4.7	CO_2 trapping mechanisms – Structural, hydrodynamic, residual, dissolution, and mineral trappings. Challenges in CO_2 sequestration.	1
	MODULE V	
5.1	Types of thermal EOR and its oil recovery mechanism, advantages, and constraints	1
5.2	Hot water flooding, steam flooding,	1

5.3	Hot water flooding, steam flooding,	1
5.4	cyclic steam flooding or huff & puff steam flooding,	1
5.5	steam-assisted gravity drainage,	1
5.6	in-situ combustion oil recovery technique.	1

	CO Assessment Sample Questions
	(i) List and briefly describe the microscopic displacement mechanisms involved in fluid flow within a reservoir.
1	(ii) Define Enhanced Oil Recovery (EOR) and explain its global significance in the oil and gas industry.
	(iii) Differentiate between capillary number and mobility ratio. How are these parameters crucial in understanding fluid displacement in reservoirs?
2	 (i) Compare and contrast the oil recovery mechanisms of surfactants, polymers, and alkaline in the context of EOR. Highlight their unique contributions to enhanced oil recovery.
3	(i) Explain the phase behavior of microemulsions and categorize the different types of microemulsions used in surfactant flooding EOR.
4	(i) Propose a thermal EOR strategy for a reservoir with specific characteristics, considering factors such as reservoir depth, temperature, and fluid properties.
т	 (ii) Explain the concept of cyclic steam flooding (Huff & Puff) and describe how it differs from continuous steam flooding in terms of implementation and oil recovery efficiency.

		EL	ECTR	OCHE	MICA		RGY	L	т	Р	J	s	С	Y Intro	ear of luction
24CH	E851	C	JNVEH	RSION AND STORAGE				3	0	0	0	3	3	20	024
Pream electro are d super	ible: ochem iscuss capaci	This o ical st sed. T itors.	course orage `his c	enat device ourse	oles ti s. Prin also	he stu nciples discu	idents s of ba isses	to tter the	ge ya p	et and rino	in its cip	ove pe les	ervi rfoi of	ew of rmance fuel	various e factors cells &
Prereq	uisite:	Nil													
Cours	Course Outcomes: After the completion of the course the student will be able to														
CO1	Sum	ımariz	e the i	factors	s affec	ting th	ne bati	tery	per	for	ma	ince	<u>)</u>		
CO2 Summarize the principle, design, construction, performance characteristics and applications of storage batteries															
CO3	Exp	lain th	le testi	ing &	evalua	ation o	f elect	rocl	nen	nica	l c	ell			
CO4	Dese	cribe t	he pri	nciple	s of fu	lel cell	s & st	ıper	cap	aci	tor				
					CO -	PO M	APPINC	£							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	28	PC)9	PO	10	PO11	PO12
CO1	3	2													
CO2	3	3				2	2								
CO3	3					1	1								
CO4	3	3				1	1								
					Asses	sment	Patter	n							
DI				Conti	nuous	Asses	sment	Тоо	ls			En	nd S	Semeste	er
Bloo	sloom's Category			Test	t1	Test	Oth too	ler ls		Examination					
Remen	Remember							٦							
Under	stand			\checkmark		N		٧		√					
Apply						N		٦			\checkmark				
Analys	se							٦							
Evalua	ate							٦							
Create								١							
Mark Distribution of CIA															

	Attendance]	Theory [L- 7	.]	
Course Structure [L-T-P-J]		Assignment	Test-1	Test-2	Total Mark s
3-0-0-0	5	15	10	10	40

Total Mark distribution					
Total Mar	rlza	CIA (Marks)	FSF (Marks)	F	SE Duration
100	INS		60 ESE (Marks)	Ex	3 hours
End Semester Examination		nation [FSF]· Pat	tern		5 110015
DATTEDN	Ezaim				FSF Mortes
FAITERN	10 0		Consisting will be give		ESE Marks
	each		from	:11	
	quest	tion carries	each module, out of		
PATTERN 1		2 marks	which 1 question shou	ld	
			be answered. Each		
	Mark	s: (2x10	question can have a		60
		=20	maximum of 2		
	mark	<u>عا</u>	subdivisions. Each		
	man	5)	question carrie	es	
			8 marks.	、	
			Marks: $(5x8 = 40 \text{ mark})$	s)	
			Time: 3 hours	10	
	Total	Marks: 20	Total Marks: [5x8 =	40	
			marks		
		SY	ILLABUS		
MODULE I :	Introd	uction (6 hours)			
EMF, rever	sible a	and irreversible	cells, free energy, effect	ct of c	cell
temperatur	e,				
thermodyn	amic c	alculation of th	ne capacity of a battery	, calc	ulations of
energy den	sity of	cells.			
MODULE II:	Storage	e Batteries (8 hou	rs)		
Principle, of and	design	, construction,	, performance charact	eristic	cs, advantage
disadvanta	ges. P	rimary batterie	es - Zn-MnO2 carbon-	zinc.	Secondary
batteries –	lead-a	cid, nickel-cad	mium, Aluminum base	ed ba	tteries, for
electric ve	hicle	applications, I	Micro batteries, Introd	luctio	n to flow
battery					
MODULE III	: Facto	ors Affecting Batt	ery Performance (9 hours))	
Factors affecting battery capacity, voltage level, current drain of discharge, types					
of discharge: continuous, intermittent, constant current, constant load.					
constant power, service life, voltage regulation, charging methods,					
battery age	& stor	age condition.			
MODULE IV	': Testi	ng & Evaluation	(8 hours)		

Evaluation of active mass, surface area measurement - BET method. Internal

resistance of cells - A.C. methods impedance method. Testing of capacity, retention of charge, vibration, life, efficiency, leakage for sealed cells

MODULE V : Fuel Cells & Supercapacitor (5 hours)

Introduction to super capacitors, types of super capacitors. Introduction to fuel

cells, types of fuel cells and technology development. solid oxide fuel cells. Text books

 M. Mench, "Fuel Cell Engines", John Wiley, New York, 2008.
 B. E. Conway, "Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications", Kluwer Academic / Plenum publishers, New York, 1999.

- 1. Gholam Abbas Nazri, "Lithium Batteries Science and Technology", Springer, New York, 2009.
- 2. D.Pavlov, "Lead Acid Batteries: Science and Technology", Elsevier, Amsterdam, 2011.

COURSE CONTENTS AND LECTURE SCHEDULE							
No.		No. of Hours					
	MODULE 1						
1.1	EMF, reversible and irreversible cells	1					
1.2	free energy	1					
1.3	effect of cell temperature	1					
1.4	thermodynamic calculation of the capacity of a battery	1					
1.5	calculations of energy density of cells.	1					
1.6	calculations of energy density of cells.	1					
	MODULE II						
2.1	Storage batteries: Principle	1					
2.2	Storage batteries: design, construction.	1					
2.3	Storage batteries: design, construction.	1					

2.4	performance characteristics	1
2.5	advantage and disadvantages.	1
2.6	Primary batteries - Zn-MnO2 carbon-zinc.	1
2.7	Secondary batteries – lead-acid, nickel-cadmium, Aluminum based batteries, for electric vehicle applications Micro batteries.	1

2.8	Introduction to flow battery	1					
MODULE III							
3.1	Factors affecting battery capacity.	1					
3.2	voltage level, current drain of discharge.	1					
3.3	types of discharge: continuous, intermittent, constant current	1					
3.4	constant load, constant power, service life, voltage regulation, charging methods	1					
3.5	constant load, constant power, service life, voltage regulation, charging methods	1					
3.6	constant load, constant power, service life, voltage regulation, charging methods	1					
3.7	constant load, constant power, service life, voltage regulation, charging methods	1					
3.8	constant load, constant power, service life, voltage regulation, charging methods	1					
3.9	battery age & storage condition	1					
	MODULE IV						
4.1	Evaluation of active mass.	1					
4.2	surface area measurement - BET method	1					
4.3	Internal resistance of cells - A.C. methods impedance method.	1					
4.4	Internal resistance of cells - A.C. methods impedance	1					

4.5	Testing of capacity, retention of charge.	1					
4.6	Testing of capacity, retention of charge.	1					
4.7	vibration, life, efficiency, leakage for sealed cells	1					
4.8	vibration, life, efficiency, leakage for sealed cells	1					
MODULE V							
5.1	Introduction to super capacitors,	1					

5.2	types of supercapacitors.	1
5.3	Introduction to fuel cells.	1
5.4	types of fuel cells and technology development.	1
5.5	solid oxide fuel cells	1

CO Assessment Questions (Sample)							
1	Explain the factors affecting the battery performance						
2	Distinguish the working of fuel cells and supercapacitors						
3	Differentiate between primary battery and secondary battery						

04011	7061	תת	OOFO					L	T	` P	J	S	С	Yea Introd	r of uction
24CH	1987	PR	OCES	S PLANT SIM		IULATION		3	0	0	0	3	3	202	24
Pream	ble∙ Si	mulat	an	invalu	able t	ool i	n ti	he	de	sign	- 1 A	nd	ontimiz	ation of	
new															
proces	ses or	mod	ificati	ons to	o exis	ting o	nes.	Pro	ces	ss	pla	nt	sim	ulation	allows
engineers to optimize and fine-tune various aspects of plant operations, identify															
opportunities for cost reduction, and facilitate effective troubleshooting. At the															
end of the course, students will gain a solid understanding of the fundamental															
concep	ots and	l prine	ciples	under	rlying	proces	ss pla	ant	sin	nul	atic	on,	incl	luding t	he key
termin	ology,	meth	odolog	gies, a	nd th	eoretic	cal for	und	ati	ons	3.				
Prerequ	usite: N	11				0.1					-				
Course	Outco	mes: A	After t	he con	npletic	on of th	ie coi	ırse	the	e st	ude	ent	will	be able	to:
CO1	Expla	ain th	e salie	ent fea	atures	of sin	nulat	ion	an	d tl	he	con	side	eration c	of
	pnys	icai ai			ntion										
CO2	Apol	no-pny		prope.	al and	simi	iltone	0110	m	odi	1101	· or	nro	aches to	nlont
002	simu	lation	evalu	ating	their 1	respect	tive a	dvai	nta	ges	an	ar I h	imit	ations	plant
CO3	Imple	ment	the	eniiat	ion-so	lving	annro	nacł	n i	<u>вее</u> п	nla	nt	sim	ulation	
000	inclu	ding	the	oquut	1011 50		appr	Juci		••	più	110	01111	alation,	
	prece	dence	order	ing of	equati	on sets	s.								
CO4	Gain	profi	icienc	y in	conve	rgence	e pro	mot	ion	m	leth	od	s, iı	ncluding	direct
	subst	titutio	n, Nev	vton's	and q	uasi-N	ewtor	n's r	net	hoo	ds,	and	1 We	egstein's	
	meth	od.													
CO5	Apply	y simu	lation	n tools	s to so	olve er	ngine	erin	g p	orol	oler	ns	rela	ted to u	nit
	opera	ations													
	and c	chemic	cal pro	cesses	S.			0							
<u> </u>	DO1	DOO		DO4	DOF			С Т	\sim	Т	$0 \cap 0$	DC	10	DO11	DO10
C01	2	FU2	F03	rU4	FUS	FOO	FUI		00) Г	-09	ГС	10	FUII	FUIZ
CO^2	2	2						-		-					
C02	3	4		2											
CO4	2			2	3										
CO5	2			2	3			-		+					
					Asses	sment	Patte	ern							
				Conti	inuous	Asses	smen	t To	ols					a	
Bloo	om's Ca	ategory	7	Tes	t1	Tes	t 2	Ot	her				End	Semeste	r
					10001 10002			to	ols		Examination				
Remember				v		 ✓ 			~		✓				
Understand				 ✓ 		v			/		v		~		
Apply				V V			•		/					~	
Analyse									/						
Evaluate															
Create				.			4								
Mark Distribution of CIA															
Course Structure	A	Th													
------------------	------------	------------	--------	--------	-------------										
[L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks										
3-0-0-0	5	15	10	10	40										

Total Mark distribution							
Total Marks CIA (Marks)		ESE (Marks)		ESE Duration			
100		40	60		3 Hrs		
End Semester	r Examin	ation [ESE]: Patte	ern				
PATTERN		PART A	PART B		ESE Marks		
PATTERN 1	10 Que questic marks Marks: marks)	estions, each on carries 2 (2x10 =20	2 questions will b from each module, out of y question should be an Each question can maximum of 2 sub-div Each question carr marks. Marks: (5x8 marks) Time: 3 hours	e given which 1 have a risions. ies 8 = 40	60		
	Total N	Iarks: 20	Total Marks: [5x8 = 40	0 marks]			

SYLLABUS

MODULE I: Introduction to simulation (8 Hrs)

Introduction: Process synthesis and analysis, solving material and energy balance for

steady-state processes, equipment sizing and analysis of process flowsheet; salient features of simulation: modular approach, equation solving approach, decompositions of networks, convergence promotion, physical and thermophysical properties, specific purpose and dynamic simulation.

Classification of mathematical modeling: Independent and dependent variables, model classification based on (i) the type of independent variables (lumped and distributed) (ii) the state of the process (static, dynamic, and complete mathematical models) (iii) the type

of the process (deterministic and stochastic)

MODULE II: Experimental results and approaches of plant simulation (8 Hrs)

Treatment of experimental results: Propagation of error through addition, subtraction, multiplication and division, sources of error, error measurement, precision errors, errors of methods, significant figures; data regression: theoretical methods of data regression and the associated problems.

Approaches of plant simulation: Modular approach of process plant simulation analysis vs. design mode, sequential and simultaneous modular approaches; equation-solving approach – precedence ordering of equation sets, disjoining, tearing a system of

equations, substitution algorithm, maintaining sparsity.

MODULE III: Decomposition of networks and convergence (8 Hrs)

Decomposition of networks: Tearing algorithms – (i) algorithms based on signal flow

graphs: Barkley-Motard algorithm, Pho-Lapidus algorithm; (ii) algorithms based on reduced digraphs: Kehat-Shacham algorithm, Murthy-Hussain algorithm; comparison of

various tearing algorithms.

Convergence promotion and thermodynamic properties: Introduction, direct substitution, Newton's and quasi-Newton's methods, Wegstein's method; thermodynamic properties: review of thermodynamic models, sources, data banks, modularity, and routing.

MODULE IV: Professional Simulation Packages and Simulation of Unit Operations (6 Hrs)

Introduction to professional plant simulation packages (ASPEN or equivalent): Basic features, the idea of an integrated simulation environment, package products, interactive process modeling, stepwise methodology of usage to a chemical plant simulation.

Simulation of various unit operations using packages (ASPEN or equivalent) (not to be

considered for end-semester examination)

MODULE V: Introduction to dynamic simulation (6 Hrs)

Specific purpose simulation and dynamic simulation: Introduction, problem description and formulation, simulation, results-discussion, and inferences of (i) auto-thermal ammonia synthesis reactor (ii) thermal cracking operation, and (iii) design of a shell and tube heat exchanger.

Textbooks

1. B.V. Babu, Process Plant Simulation, Oxford University Press, 2004.

Referenc	e books						
1	. I.D. Gil Chaves, J.R.G. López, J.L. García Zapata, A. Leg	guizamón					
	Robayo, G. Rodríguez Niño, Process Analysis and Simu	lation in					
	Chemical Engineering, Springer International, 2016.						
2	. W. Reonick, Process Analysis and Design of Chemical E	Engineers,					
	Wiley-Interscience, 1983.						
3	. A. Husain, Chemical Process Simulation, Wiley, 1986						
	COURSE CONTENTS AND LECTURE SCHEDULE						
No		No. of					
INO.		Hours					
	MODULE 1						
	Introduction: Process synthesis and analysis, solving	1					
1.1	material and						
	energy balance for steady-state processes						
1.2	equipment sizing and analysis of process flowsheet;	1					
1.0	salient features of simulation: modular approach, equation	1					
1.3	solving						
	approach						
1.4	decompositions of networks, convergence promotion	1					
1 =	physical and thermo-physical properties, specific	1					
1.5	purpose, and						
	dynamic simulation.						
	Classification of mathematical modeling: Independent	1					
1.6	and dependent variables, model classification						
	based on (i) the type of						
	independent variables (lumped and distributed)						
1 7	(ii) the state of the process (static, dynamic, and	1					
1.1	complete						
	mathematical models)						
1.8	(iii) the type of the process (deterministic and stochastic)	1					

MODULE II					
2.1	Treatment of experimental results: Propagation of error through addition, subtraction, multiplication, and division	1			
2.2	sources of error, error measurement, precision errors, errors of methods, significant figures	1			
2.3	data regression: theoretical methods of data regression and the associated problems.	1			
2.4	Approaches of plant simulation: Modular approach of process plant simulation - analysis vs. design mode	1			
2.5	sequential and simultaneous modular approaches;	1			
2.6	equation-solving approach – precedence ordering of equation sets,	1			

2.7	disjoining, tearing a system of equations	1
2.8	substitution algorithm, maintaining sparsity	1
	MODULE III	
3.1	Decomposition of networks: Tearing algorithms – (i) algorithms based on signal flow graphs: Barkley-Motard algorithm, Pho-Lapidus algorithm:	1
3.2	(ii) algorithms based on reduced digraphs: Kehat-Shacham algorithm	1
3.3	Murthy-Hussain algorithm; comparison of various tearing algorithms.	1
3.4	Convergence promotion and thermodynamic properties: Introduction, direct substitution,	1
3.5	Newton's and quasi-Newton's methods,	1
3.6	Wegstein's method;	1
3.7	thermodynamic properties: review of thermodynamic models,	1
3.8	sources, data banks, modularity, and routing.	1
	MODULE IV	
4.1	Introduction to professional plant simulation packages (ASPEN or	1
1.0	equivalent): Basic features	1
4.2	products.	1
4.3	interactive process modeling, stepwise methodology of usage to a chemical plant simulation.	1
4.4	Simulation of various unit operations using packages (ASPEN or	1
	equivalent) (not to be considered for end-semester examination)	1
4.5	(ASPEN or	1
	equivalent) (not to be considered for end-semester examination)	1
4.6	(ASPEN or	T
	equivalent) (not to be considered for end-semester examination)	
	MODULE V	
5.1	Specific purpose simulation and dynamic simulation: Introduction	1
5.2	problem description and formulation, simulation, results- discussion, and inferences of (i) auto-thermal ammonia synthesis reactor	1
		1
5.3	discussion, and inferences of (i) auto-thermal ammonia synthesis reactor	1

5.4	problem description and formulation, simulation, results- discussion, and inferences of (ii) thermal cracking operation	1
5.5	problem description and formulation, simulation, results- discussion, and inferences of (iii) design of a shell and tube heat exchanger.	1
5.6	problem description and formulation, simulation, results- discussion, and inferences of (iii) design of a shell and tube heat exchanger.	1

	CO Assessment Sample Questions					
1	In the context of process plant simulation, explain in detail the salient features of					
	simulation, emphasizing the modular approach, the equation-solving approach, and the decomposition of networks.					
	Compare and contrast the sequential and simultaneous modular					
2	approaches in plant simulation. Discuss the advantages and					
	limitations associated with each					
	approach.					
3	Describe the equation-solving approach in plant simulation, focusing on the					
	precedence ordering of equation sets.					
4	Discuss considerations for selecting the most appropriate convergence					
'	promotion					
	method based on the characteristics of the simulation problem.					
	A flash chamber operating at 80 °C and 500 kPa is separating 1000					
	kg/hr of a feed that is 10 mol% Ethane, 5% Propane, 15% n-Butane, 10%					
	n-Pentane, 12% iso-Pentane, 8% n-Hexane, 30% Heptane and 10%					
5	Nonane. Determine the product compositions and flow rates. Feed					
	conditions are the same as that of the flash chamber. Explain how you					
	would approach and formulate this problem using simulation tools,					
	specifying the simulation package you would employ. Also, analyze and					
	interpret the simulation results to address the engineering					
	problem.					

24CH	E871	Wa	iste to) Energ	y Con	versio	n	L	Т	Ρ	J	S	С	Yea Introd	r of uction
					~			3	0	0	0	33	;	20	24
Preamble: This course aims to update the knowledge of students in the area of waste															
utilization for energy production through newer technologies. This course															
provides a comprehensive exploration of waste-to-energy conversion.															
cover	covering waste characterization, energy production techniques (incineration,														
gasifi	cation	, pyro	lysis	, bioc	hemic	al an	d ch	emi	cal	ro	ute	es, e	en	vironm	nental
aspec	ts, plas	stic wa	iste n	ianage	ment,										
and in	nnovat	ions ir	n ener	rgy pro	ductic	on fror	n soli	d wa	aste	es.					
Prereq	uisite:	Nil													
Cours	se Outo	omes:	After	the co	mpleti	on of t	the co	urse	e th	le st	tud	lent	wi	ll be al	ble to
CO1	Chara Waste	acteriz e-to-En	e diffé lergy	erent ty (WTE) t	ypes o echno	f waste logies.	e and	ana	ılyz	e th	ne p	pres	en	t statu	s of
CO2	Analy	ze the	suita	ability of	of diffe	erent w	vaste-	to-e	ner	gy	cor	nver	sic	on met	hods
	for	~													
000	speci	tic was	te typ	bes.			1 .		•	1	1.				
CO3	Expla	in var	10US	waste-1	to-ene	rgy teo	chniq	ues,	1110	cluc	lin	g ind	21 r	ieratioi	n,
CO4	Selec	t suita	hle h	iochem	ical/c	hemic	alroi	ites	for	COI	nve	rein	n	of was	te to
001	energ	v.	DIC D		lical / c	minit	ariot	1105	101	COI	100	1 310		or was	
CO5	Expla	in the	prine	ciples a	and m	ethodo	ologies	s in	ha	rne	ssi	ng e	ne	rgy fro	m
	solid	c			• • • •	1.		1		1		· (*		1	
	waste	es, Iocl	lsing	on em	cient t	ecnni	ques s	sucr	i as	ae	nsı	liicai	10	n and	power
	plain	emcie	incy i	mprov	CO - I	г. РО МАТ	PPING								
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PC)9	PO1	0	PO11	PO12
CO1	2	2					3								
CO2			2						2						
CO3					3							2			
CO4				3				1	2						
CO5														2	2
				Counti	Assess	ment F	atter	n Tee	1~						
Dla	om'a C	ataran		Conti	nuous	Asses	sment		ois	-		Enc	1 S	Semeste	er
DIO	Bloom's Category		у	les	τı	Tes	t2	toc	ols		Examination		n		
Remember		~		V	•	V	/		 ✓ 						
Understand		~		V	•	V	/					~			
Apply			~		V	•	V	/					v		
Analys	se							V	/						
Evalu	ate							V	-						
Create	2							V	/						

Mark Distribution of CIA

Course Structure	Attendance	The			
[L-T-P-J]		Assignment	Test-1	Test-2	Total Mark s
4-0-0-0	5	15	10	10	40

Total Mark distribution							
Total Ma	rks	CIA (Marks)	ESE (Marks)	E	SE Duration		
100		40	60		3 hrs		
End Semeste	er Exan	nination [ESE]: Pa	<u>attern</u>				
PATTERN		PART A	PART B		ESE Marks		
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)		 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) 		60		
Total Marks: 20			Total Marks: [5x8 = 40 marks]				
SYLLABUS							
MODULE I:	Introdu	iction to Energy f	rom Waste (7 hours)				

Introduction: Definition of wastes and their classification, Important quality parameters of different types of wastes, Waste suitable for energy production, Solid wastes and their classification, Wastewater and their classification. Need of energy production from wastes, present status of WTE technologies. Characterization of solid wastes: Physical, Chemical, Proximate and ultimate analysis, Fusing point of ash, Lignocellulosic composition, Leaching properties, Energy content: Heating value, Characterization of wastewater. Combustion: Nature and types of combustion processes – Mechanism.

MODULE II: Energy Production from Wastes (7 hours)

Energy Production from Wastes: Energy production through incineration, gasification,

pyrolysis and syngas utilization. Incineration: principle, Incinerators parts and their types/working, Environmental impact and operational issues, advantages, and

disadvantages; Gasification: principle, advantages, and disadvantages; Pyrolysis:

principle, advantages, and disadvantages; Syngas utilization: principle, advantages, and disadvantages.

MODULE III: Energy production through biochemical and chemical routes (8 hours)

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation. Energy production through biochemical and chemical routes- Energy production through anaerobic digestion, fermentation, transesterification and introduction to microbial fuel cells. Anaerobic digestion: principle, advantages, and disadvantages; Fermentation: principle, advantages, and disadvantages; Transesterification: principle, advantages, and disadvantages; Introduction to microbial fuel cells: principle, advantages, and disadvantages.

MODULE IV: Environmental Aspects (7 hours)

Definition of pyrolysis, mechanism, Types of pyrolysis, Operating conditions and end product distribution, Options for management of plastic wastes and recycling through pyrolysis. Energy Production from Algae: Cultivation of algal biomass from wastewater and energy production from algae. Algae cultivation: principle, advantages, and disadvantages; Energy production from algae: principle, advantages,

and disadvantages; Applications of algae in waste management.

MODULE V: Innovations in Mineral Processing Technology (7 hours)

Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics. Densification of solids: principle, advantages, and disadvantages; Efficiency improvement of power plants: principle, advantages, and disadvantages; Energy production from waste plastics: principle, advantages, and disadvantages; Applications of waste plastics in energy

generation. Text books

1. Rogoff, M. J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store, 2011.

2. Young G. C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons, 2010.

3. Harker, J. H. and Backhusrt, J. R., "Fuel and Energy", Academic Press Inc, 1981.

4. EL-Halwagi, M. M., "Biogas Technology – Transfer and Diffusion", Elsevier Applied Science, 1986.

5. Hall, D.O. and Overeed, R.P.," Biomass – Renewable Energy", John Willy and Sons. Mondal, P. and Dalai, A. K. eds., 2017. Sustainable Utilization of Natural Resources.

CRC Press.

Reference books

1. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

2. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John

Wiley & Sons, 1996

COURSE CONTENTS AND LECTURE SCHEDULE						
No.		No. of Hours				
	MODULE 1 (7 hours)					
1.1	Introduction: Definition of wastes and their classification,	1				
	Important quality parameters of different types of wastes.					
1.2	Waste suitable for energy production, Solid wastes and their	1				
	classification, Wastewater and their classification					
1.3	Need of energy production from wastes, present status of WTE	1				
	technologies.					
1.4	Characterization of solid wastes: Physical, Chemical,	1				
	Proximate and ultimate analysis.					

1.5	Fusing point of ash, Lignocellulosic composition, Leaching	1				
	properties, energy content: Heating value.					
1.6	Fusing point of ash, Lignocellulosic composition, Leaching	1				
	properties, energy content: Heating value.					
1.7	Characterization of wastewater. Combustion: Nature and types	1				
	of combustion processes – Mechanism.					
	MODULE II (7 hours)					
2.1	Energy Production from Wastes: Energy production through	1				
	incineration, gasification, pyrolysis and syngas utilization.					
2.2	Energy Production from Wastes: Energy production through	1				
	incineration, gasification, pyrolysis and syngas utilization.					
03	Incineration: principle, Incinerators parts and their	1				
2.5	types/working.	T				
2.4	Environmental impact and operational issues, advantages,	1				
	and disadvantages.					
2.5	Gasification: principle, advantages, and disadvantages.	1				
2.6	Pyrolysis: principle, advantages, and disadvantages.	1				
2.7	Syngas utilization: principle, advantages, and disadvantages.	1				
	MODULE III (8 hours)					
3.1	Biomass Gasification: Gasifiers – Fixed bed system –	1				
	Downdrait and updrait gasiliers.					
3.2	Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers.	1				
3.3	Fluidized bed gasifiers – Design, construction and operation.	1				

3.4	Energy production through biochemical and chemical routes	1
3.5	Energy production through anaerobic digestion, fermentation,	1
	transesterification and introduction to microbial fuel cells	
3.6	Anaerobic digestion: principle, advantages, and disadvantages;	1

3.7	Fermentation: principle, advantages, and disadvantages	1
3.8	Transesterification: principle, advantages, and disadvantages; Introduction to microbial fuel cells: principle, advantages, and disadvantages.	1
	MODULE IV (7 hours)	
4.1	Definition of pyrolysis, mechanism, Types of pyrolysis.	1
4.2	Operating conditions and end product distribution.	1
4.3	Options for management of plastic wastes and recycling through pyrolysis.	1
4.4	Energy Production from Algae: Cultivation of algal biomass from wastewater and energy production from algae.	1
4.5	Algae cultivation: principle, advantages, and disadvantages.	1
4.6	Energy production from algae: principle, advantages, and disadvantages.	1
4.7	Applications of algae in waste management.	1
	MODULE V (7 hours)	
5.1	Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics.	1
5.2	Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics.	1
5.3	Densification of solids: principle, advantages, and disadvantages.	1
5.4	Efficiency improvement of power plants: principle, advantages, and disadvantages	1
5.5	Energy production from waste plastics: principle, advantages,	1
	and disadvantages.	

5.6	Energy production from waste plastics: principle, advantages, and disadvantages.	1

5.7	Applications of waste plastics in energy generation.	1
-----	--	---

	CO Assessment Sample Questions
CO1	Analyze the present status of Waste-to-Energy (WTE) technologies, highlighting advancements and challenges. How can understanding waste characteristics contribute to the improvement of WTE processes?
CO2	Compare and contrast the suitability of incineration and gasification for different types of waste. Provide examples and justifications.
CO3	Explain about the environmental impact of incineration technology. How does this impact vary based on the characteristics of the waste being incinerated?
CO4	Explain the working principle of Microbial Fuel Cells How can Microbial Fuel Cells contribute to sustainable waste conversion?
CO5	Explain the potential environmental impacts associated with inefficient waste-to-energy processes. Explain how adopting densification and
	improving power plant efficiency can mitigate these impacts.

24CHE881 COLLO		DIDS AND INTERFACE			L	Т	Р	J	S	С	Yea Introd	ar of uction			
			1	SINGIIN	CCKIN	G		3	0	0	0	3	3	20	24
Preamble: The objective of this course is to introduce students to the						to the									
fundamentals															
of coll	of colloidal and interfacial phenomena. Students will be exposed to a broad							broad							
select	selection of topics, including colloidal suspensions, surface tension, wetting,														
surfac			otion,	interp	articl	e intei	ractic	ons e	etc.						
Prereq	a_{Out}	IN11	Aftor	the co	mnlot	ion of	the or	1140	o th	o ot	hud	ont	***	ill be o	hle to:
C01	E Ould Fypla	oin the	fund	ament				loid		.0 51	uu	.em	w	iii be a	
CO1	Sum	morize	the i	mporte		f inter	face	noir	5 1001	ina					
CO_2	Fynl	$\frac{11a112c}{11a112c}$	vorio	mporta	thode	of syr	thesi	s of	no1	nig	art	icle	2		
CO4	Desc	ribe th	e cha	racteri	zation	or syr meth	nds f	r th	na e a	nalı	21 L.	s of	ว ว	narticl	<u>a</u>
001	Dese			racter	CO -	PO MA	PPINC	} }	ic a	narj	y 010	5 01	a	partier	<u> </u>
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PC)9	POI	10	PO11	PO12
CO1	3	3	3										_		
CO2	3	3													
CO3	3	3	3												
CO4	3	3	3												
					Assess	ment	Patter	'n							-
				Conti	nuous	Assess	sment	т Тоо	ls			Fn	d s	Semeste	or.
Bloo	om's C	ategor	у	Test 1		Test 2		Oth	ner	Examir		ninatio	nation		
Deve	. 1							toc	ols						
Remen				<i>✓</i>				V		V					
Under Apply	stand							V		V					
Apply	0			V		V		V	/					V	
Fuelu	c ate							V	/	-					
Create									/						
Create				Ma	ark Dis	stribut	ion of	CIA							
							 ТЪ	001777	ΓT	TI					
Cours	e Stru	cture	Att	endan	ce		111	ieory [L-]		Total		`otal			
[I	-Τ-Ρ-ι	[ו				Assignment			: Test-		$\cdot 1$ Test-2 M		lark		
2	_0_0_0			5		1	5		10)		10	`	S	40
3-0-0-0			5		1	0		1(,		10	,		τU	

Total Mark distribution					
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration		
100	40	60	3 hrs		

End Semester	· Examination [ESE]: Pat	tern						
PATTERN	PART A	PART B	ESE Marks					
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours 	60					
	Total Marks: 20	Total Marks: [5x8 = 40 mark s]						
	S	YLLABUS						
MODULE I :	Introduction of colloids	s (6 hours)						
Importance colloids, Pr between pa MODULE II Surfactants	e of operties and applica urticles, colloid stabilit : Introduction to surface s: classification, proper	tion of colloid systems, int y, and aggregation ctants (7 hours) ties, applications. Surfactants	sin solution:					
Electric do	uble layer, zeta potent	ial, DLVO theory	interfaces:					
MODULE III	: Introduction to interfa	ace engineering (8 hours)						
Surface free energy, films on liquid substrates (mono-molecular films, Langmuir-Blodgett layers), Adsorption-Langmuir and Gibbs adsorption isotherm, Types of Interface (Solid-Gas, Solid-liquid, liquid -gas, liquid- liquid) and its features MODULE IV : Synthesis methods (6 hours) Flocculation, Coagulation, Electrokinetics, and Rheology of dispersions.								
Porous materials and membranes, Thin films, Surfactant assisted nanoparticle synthesis, Applications of colloid and interfacial science. MODULE V : Characterization methods (9 hours)								
Particle Size Diameter M Aerosol Ana Particle ma Volumetric	e, Surface area, Volum leasurement Methods alyzer, Bacho Micropa ass, flow rate and average p	ne, Equivalent Diameter and A – Microscopy, Optical Counte article classifier, Particle Siz particle concentration calculat	MODULE V : Characterization methods (9 hours) Particle Size, Surface area, Volume, Equivalent Diameter and Aerodynamic Diameter Measurement Methods – Microscopy, Optical Counter, Electrical Aerosol Analyzer, Bacho Microparticle classifier, Particle Size analyzer. Particle mass, Volumetric flow rate and average particle concentration calculation					

Text b	ooks				
1	1. J. C. Berg, An Introduction to Interfaces and Colloids: The Bridge to				
]	Nanoscience, World Scientific, Singapore				
2.]	P. Ghosh, Colloid and Interface Science, PHI Learning, New D	elhi			
3.	R. J. Hunter, Foundations of Colloid Science, Oxford Univers York	ity Press, New			
Refere	nce books				
1.	D.J. Shaw, Colloid and Surface Chemistry, 4th Edition, Bu	atterworth-			
]	Heinemann, Oxford				
2.]	Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications. New York				
3.]	Robert J. Stokes, D Fennell Evans, Fundamentals of Interfac	ial			
4.]	P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and	Surface			
5	Chemistry, Marcel Dekker, New York	for			
נ. ו	Louis Incouore, A John, Nanoteennology: Basic Calculations	101			
6 7	Digiters and Sciencists – willy & Sons				
U. 1	Nanoscience and Nanotechnology				
7	Kalloscience and Nanotechnology,	anoScale			
1.1	Science and Engineering McGraw-Hill	anoscaic			
	COURSE CONTENTS AND LECTURE SCHEDULE				
		No. of			
No.		Hours			
	MODULE 1				
1.1	Introduction of Colloids	1			
1.2	The colloidal state and classification	1			
1.3	Importance of colloids	1			
	-				
1.4	Properties and application of colloid systems	1			
1.5	interaction between particles	1			
1.6	colloid stability and aggregation 1				
	MODULE II				
2.1	Surfactants: classification, properties	1			
2.2	applications	1			
2.3	Surfactants in solution: micelles, vesicles	1			

2.4	Micro emulsions Electrical phenomena at interfaces: Electric double layer	1					
2.5	Micro emulsions Electrical phenomena at interfaces: Electric double layer	1					
2.6	zeta potential	1					
2.7	DLVO theory	1					
	MODULE III						
3.1	Surface free energy	1					
3.2	films on liquid substrates (mono-molecular films, Langmuir-Blodgett layers)	1					
3.3	films on liquid substrates (mono-molecular films, Langmuir-Blodgett layers)	1					
3.4	Adsorption-Langmuir	1					
3.5	Gibbs adsorption isotherm	1					
3.6	Types of Interface	1					
3.7	Types of Interface	1					
3.8	Types of Interface 1						
	MODULE IV						
4.1	Flocculation, Coagulation	1					
4.2	Electrokinetics, and Rheology of dispersions	1					
4.3	Porous materials and membranes, Thin films	1					
4.4	Thin films	1					
4.5	Surfactant assisted nanoparticle synthesis	1					
4.6	Applications of colloid and interfacial science 1						
	MODULE V						
5.1	Particle Size, Surface area, Volume, Equivalent Diameter	1					
5.2	Particle Size, Surface area, Volume, Equivalent Diameter	1					

5.3	Aerodynamic Diameter introduction	1
5.4	Measurement Methods – Microscopy, Optical Counter	1
5.5	Electrical Aerosol Analyzer, Bacho Microparticle classifier	1
5.6	Bacho Microparticle classifier	1
5.7	Particle Size analyzer, Volumetric flow rate	1
5.8	average particle concentration calculation	1
5.9	Volumetric flow rate and average particle concentration calculation	1

	CO Assessment Sample Questions
1	Explain colloidal stability.
2	Explain DLVO theory.
3	Explain the various surfactant assisted nanoparticle synthesis methods.
4	Explain the method of measurement of particle size diameter.

		EN	JGIN	GINEERING OF			L	Т	Р	\mathbf{J}	s	С	Ye Introd	ear of
24CHE89	1	CL	IMA	TE CH	IANGE	,	3	0	0	0	3	3	(2024
Preamble:	This comple	ourse	pro	vide	a foun	datior	nal u	inde	ersta	nd	ing	g of	the	
climate change engineering, focusing on global warming, sustainable														
energy solutions, and environmental policy. Through comprehensive														
modules, students will engage with topics such as climate change adaptation,														
mitigation	mitigation strategies, and the role of engineering in addressing climate													
Prerequisite	Nil													
	1111		. 1		1	C / 1			41		1		.11 1	11 /
Course Out	comes	: Afte	r the	e com	pletion	of the	e coi	ırse	the	stu	de	nt	will be	able to
CO1 Des	cribe t	he cli	imate	e cha	nge dri	ivers a	and I	histo	ory.					
CO2 Imp	lemen	t sus	taina	ible e	nergy	soluti	ons	for o	clima	ate	mi	tiga	ation.	
CO3 Eva	luate §	global	clin	iate <u>r</u>	olicies	and a	agree	eme	nts.		•			
CO4 App	ly env	ironm	ienta	ul ass	essmer	nts for	r sus	stair	able.	e er	ıg11	nee	ring.	
CO5 Des	ign cro	oss-se	ector	clim	ate ada	aptatio	on st	rate	gies	•				
CO POI	DUJ	DU3			PO6	DO7		78	ΡO	р	$\cap 1$	Ο	PO11	PO12
CO1 3	3	2	104	105	100	107	1 (50	10	<u> </u>		.0	1011	1012
CO2 3	3		2							-				
CO3 3	3		3			3				+				
CO4 3	3			2		3								
CO5 3	3				3									
				As	sessme	nt Pat	tern							
			C	Contir	uous A	Assess	smer	nt						
Bloom's Category Tools								En E-	d S	emester				
		-	Te	estI	Test	:2	Oti	her			ĿХ	am	mation	1
Remember							100	/					/	
Understan	Inderstand V V V													
Apply	nnly y y y													
Analyze			-				V	•	_					
Evaluate							V	•						
Create							V	•						

Mark Distribution of CIA									
	Attendance	Idance Theory [L- T]							
Course Structure [L-T-P-J]		Assignment	Test-1	Test-2	Mark s				
3-0-0-0	5	15	10	10	40				

Total Mark distribution									
Total Marks	CIA (Marks)	ESE (Marks)	ES	SE Duration					
100	40	60		3hrs					
End Semester Ex	amination [ESE]: Pat	ttern							
PATTERN	PART A	PART B		ESE					
				Marks					
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	 2 questions will be from each module, o which 1 question sh be answered. If question can hav maximum of 2 divisions. Each question carrimarks. Marks: (5x8 = 4 marks) Time: 3 hours 	e given ut of ould Each e a sub es 8 es 8	60					
Total Marks: 20 Total Marks: [5x8 = 40									
		markoj							
	S	YLLABUS							

MODULE I : Introduction to Climate Change Science(7 Hrs.)

Introduction: Weather and Climate, Components of the climate system and their

interactions. Understanding Climate Change: Historical perspective, key contributors, and factors driving climate change. Climate Models: Introduction to climate modeling, types of climate models, and their applications in predicting climate change. Climate of India during the four seasons.

MODULE II : Global Warming and its Implications(7 Hrs.)

Greenhouse Effect: Principles and mechanisms, role of greenhouse gases, and

impact on global	Global Warming Causes and Effects:
temperatures.	Anthropogenic

and natural causes, impact on ecosystems, and implications for Carbon biodiversity.

Footprint Analysis-Measurement techniques. Renewable energy technologies, carbon capture and storage, and sustainable practices for mitigating global warming.

MODULE III : Climate models (8 Hrs.)

One, two and 3-dimensional climate models, History of climate modelling, Sensitivity of climate models, parameterization of climate processes, interactions in the climate system. Application of climate model for prediction and policy development, future climate scenarios. Global warming and sea level rise, impacts of sea level rise, impact on fresh water sources, impact on natural ecosystems. International efforts

to minimize climatic change and their impacts.

MODULE IV : Sustainable Energy Solutions (6 Hrs.)

Renewable Energy Technologies: Solar, wind, hydro, and geothermal energy

technologies, their potential, and challenges in their deployment. Energyefficient practices in industries, buildings, and transportation, energy audits, and optimizing energy consumption. Chemical engineering applications in developing sustainable energy solutions, current trends, and future prospects. MODULE V : Environmental Policy and Climate Governance (8 Hrs.)

International Climate Agreements: Overview of major international agreements, their goals, and their impact on global climate change. Climate Governance: Role of governments, organizations, and stakeholders in climate governance, policy formulation, and implementation of climate change initiatives. Ethical and Social Considerations: Ethical dilemmas in climate change mitigation and adaptation,

social equity, and justice in climate change policies and actions.

Text books

- 1. Climate Change: What Everyone Needs to Know by Joseph Romm
- 2. Fundamentals of Atmospheric Modelling, Marc Z. Jacobson, Cambridge University Press, 2005.
- 3. Adaptation and mitigation strategies for climate change, Sumi A., Fukushi and

Ahiramatsu, Springer, 2010.

Reference books

- 1. Introduction to Modern Climate Change" by Andrew Dessler.
- 2. Global warming the complete briefing (second edition): John Houghton, Cambridge university Press, 2009.
- 3. Energy Systems and Sustainability: Power for a Sustainable Future" by Bob Everett and Godfrey Boyle.
- 4. Climate Change Adaptation and Disaster Risk Reduction: An Asian Perspective" by Rajib Shaw.
- 5. Environmental Policy: New Directions for the Twenty-First Century" by Norman

J. Vig and Michael E. Kraft.

COURSE CONTENTS AND LECTURE SCHEDULE								
No		No. of						
INO.		Hours						
	MODULE 1							
1.1	Weather and Climate, Components of the climate system and	1						
	their interactions.							
1.2	Understanding Climate Change: Historical perspective, key	1						
	contributors, and factors driving climate change.							
1.3	Understanding Climate Change: Historical perspective, key	1						
	contributors, and factors driving climate change							
1.4	Climate Models: Introduction to climate modeling.	1						
1.5	Types of climate models, and their applications in predicting	1						
	climate change.							
1.6	Types of climate models, and their applications in predicting	1						
	climate change.							
1.7	Climate of India during the four seasons.	1						
	MODULE II							

2.1	Principles and mechanisms, role of greenhouse gases, and	1						
	impact on global temperatures.							
2.2	Global Warming Causes and Effects	1						
2.3	Anthropogenic and natural causes, impact on ecosystems, and implications for biodiversity	1						
2.4	Anthropogenic and natural causes, impact on ecosystems, and implications for biodiversity	1						
2.5	Carbon Footprint Analysis-Measurement techniques.	1						
2.6	Renewable energy technologies.	1						
2.7	Carbon capture and storage, and sustainable 1 practices for 1							
	mitigating global warming.							
	MODULE III							
3.1	One, two and 3-dimensional climate models, History of climate modelling	1						
3.2	Sensitivity of climate models,	1						
3.3	parameterization of climate processes, interactions in the climate system	1						
3.4	Application of climate model for prediction and policy development, future climate scenarios.							
3.5	Application of climate model for prediction and policy development, future climate scenarios.	1						
3.6	Global warming and sea level rise, impacts of sea level rise, impact on fresh water sources, impact on natural	1						
	ecosystems.							
3.7	Global warming and sea level rise, impacts of sea level rise,	1						
	impact on iresh water sources, impact on natural							
	ecosystems.							
	International efforts to minimize climatic change and	1						
3.6	their impacts	1						
	MODULE IV							
	Renewable Energy Technologies: Solar wind bydro	1						
4.1	and geothermal energy technologies. their potential.	Ţ						
	and challenges in their deployment.							

geothermal energy technologies, their potential, and challenges in their deployment.4.3Energy-efficient practices in industries, buildings, and transportation.14.4Energy-efficient practices in industries, buildings, and transportation.1	
4.3Energy-efficient practices in industries, buildings, and transportation.14.4Energy-efficient practices in industries, buildings, and transportation.1	
4.4Energy-efficient practices in industries, buildings, and 1 transportation.1	
4.5 Energy audits, and optimizing energy consumption.	
4.6Chemical engineering applications in developing sustainable1	
energy solutions, current trends, and future prospects.	
MODULE V	
5.1 international agreements, their goals, and their impact on global climate change.	
International Climate Agreements: Overview of 1	
5.2 major international agreements, their	
goals, and their impact on	
global climate change.	
5.3 Climate Governance: Role of governments, organizations, 1	
anu stakeholders in climate governance	
- Climate Governance: Role of governments, organizations, 1	
5.4 and	
stakeholders in climate governance	
5.5 Policy formulation, and implementation of climate 1	
change	
policy formulation, and implementation of climate 1	
5.6 change	
initiatives.	
Ethical dilemmas in climate change mitigation 1	
5.7 and adaptation, social equity, and justice	
in climate change	
Ethical dilemmas in climate change mitigation and 1	
5.8 adaptation, social equity, and justice in climate	
change policies and actions.	

CO Assessment sample Questions							
1	Name the major contributors to climate change historically.						
2	Develop a sustainable energy plan for a specific region considering its						

unique climate characteristics.

3	Analyze the impacts of climate change on specific ecosystems and biodiversity.
4	Evaluate the effectiveness of current climate change policies in a selected region.
5	Identify the key components of an effective climate change mitigation strategy.

EIGHTH SEMESTER OPEN ELECTIVE-2

24CHC	0812	WAST	E TO	ENER	GY CC)NVEF	SION	L 3	Т 0	P .	J S	C 3	Yea Intro 20	ar of ductio n 024
Preamble: This course aims to update the knowledge of students in the area of waste														
utiliza	tion f	or ene	ergy p	orodu	ction	throu	gh ne	ewei	r te	chn	olog	gies.	. This o	course
provid	provides a comprehensive exploration of waste-to-energy conversion,													
coverii	ng was	ste ch	aracte	erizati	on, er	nergy	produ	ictic	on t	echr	ιiqι	ies ((incine	ation,
gasific	ation,	pyrol	ysis),	bioch	nemica	al an	d ch	emi	cal	rou	tes	, eı	nvironr	nental
aspect	s, bic	gas, j	plasti	c was	ste									
manag	ement	t, and	innov	vations	s in er	nergy j	produ	ctio	n fi	om s	soli	d wa	astes.	
Prerequ	isite:	Nil												
Course	e Outc	omes:	After	the co	mplet	ion of	the co	ours	e tl	ne st	ude	nt v	vill be a	ble to
CO1	Chara	acteriz	e diffe	erent t	ypes o	f wast	e beh	ind	wa	ste-te	o-ei	nerg	y conve	rsion
	proces	sses.												
CO2	2 Analyze the suitability of different waste-to-energy conversion													
	methods for													
CO3	specific waste types.													
005	Explain the properties of Blogas, plant technology and constructional													
	crucial for integrating biogas into sustainable bioenergy systems													
CO4	Explain various waste-to-energy techniques, through biochemical and													
	chemical roots.													
C05	5 Explain the principles and methodologies in harnessing energy from													
	solid		_	_			_					_		
	waste	s.						_						
CO - PO MAPPING														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PO	PC)10	PO11	PO12
001		1		0			2			9				
CO1				2			ろ つ							
CO_2			0	1			ა ვ							
C03		2	4	3			3							
C07	2	2	ર	3	1		े २							
000	4	4	5	5	Assess	ment	Datter	rn						
				Co	ntinu		sessn	in						
				00	mina	Tools	6000011	iciit			F	2nd S	Semeste	r
Bloom's Category			7	Tes	st1	Tes	t 2	Otł	ner]	Exar	ninatio	n
						100		too	ols				_	
Remen	nber			V	/	V	•	V	•				~	
Under	stand		· · · · · · ·											

Apply	~	v	~	 ✓
Analyze			~	
Evaluate			~	
Create			~	

Mark Distribution of CIA								
Course Structure Attendance Theory [L- T]								
[L-T-P-J]		Assignment	Test-1	Test-2	Mark			
					S			
3-0-0-0	5	15	10	10	40			

Total Mark distribution									
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration						
100	40	60		3 hr.					
	End Semester Examination [ESE]: Pattern								
PATTERN	PART A	PART B		ESE Marks					
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	 2 questions will be from each module, or which 1 question she be answered. If question can have maximum of 2 divisions. Each question carrie marks. Marks: (5x8 = 40 mar Time: 3 hours 	given ut of ould Each e a sub es 8 rks)	60					
	Total Marks: 20	Total Marks: [5x8 = marks]	• 40						
I									
SYLLABUS									
MODULE I: Introduction to Energy from Waste									
Introduction: 1 quality	Definition of was	tes and their classi	ficatio	n, Important					

parameters of different types of wastes, Waste suitable for energy production, Solid wastes and their classification, Wastewater and their classification. Need of energy production from wastes, present status of WTE technologies. Combustion: Nature and types of combustion processes – Mechanism. MODULE II: Energy Production from Wastes

Energy Production from Wastes: Energy production through incineration, gasification, pyrolysis and syngas utilization. Incineration: principle, Incinerators parts and their types/working, Environmental impact and operational issues, advantages, and disadvantages; Gasification: principle, advantages, and disadvantages; Pyrolysis: principle, advantages, and disadvantages; Syngas

utilization: principle, advantages, and disadvantages.

MODULE III: Energy production through biochemical and chemical routes

Energy production through biochemical and chemical routes- Energy production

through anaerobic digestion, fermentation, transesterification and introduction to microbial fuel cells. Anaerobic digestion: principle, advantages, and disadvantages; Fermentation: principle, advantages, and disadvantages; Transesterification: principle, advantages, and disadvantages; Introduction to microbial fuel cells: principle, advantages, and disadvantages.

MODULE IV: Environmental Aspects and Biogas

Energy Production from Algae: Cultivation of algal biomass from wastewater and

energy production from algae. Algae cultivation: principle, advantages, and disadvantages; Energy production from algae: principle, advantages, and disadvantages; Applications of algae in waste management. Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio

energy system - Design and constructional features

MODULE V: Energy Production from Solid Wastes

Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics. Densification of solids: principle, advantages, and disadvantages; Efficiency improvement of power plants: principle, advantages, and disadvantages; Energy production from waste plastics: principle, advantages, and disadvantages;

Applications of waste plastics in energy generation.

Text books

- 1. Rogoff, M. J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store, 2011.
- 2. Young G. C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons, 2010.
- 3. Harker, J. H. and Backhusrt, J. R., "Fuel and Energy", Academic Press Inc, 1981.

4. EL-Halwagi, M. M., "Biogas Technology – Transfer and Diffusion", Elsevier Applied Science,

1986.

5. Hall, D.O. and Overeed, R.P.," Biomass – Renewable Energy", John Willy and Sons. Mondal, P. and Dalai, A. K. eds., 2017. Sustainable

Ut	ilization of Natural					
Resources. CRC Press.						
Doforo	noo hoola					
1 Fo	ad Feed and Fuel from Biomass Challal D S IBH Bublish	ing Co				
1. TO	+ 1+d = 1001	ing Co.				
2 Rid	t. Ltu., 1991.	FВ				
Z. DR Ha	gan.	Б. Б.				
Jo	hn Wiley & Sons, 1996					
	COURSE CONTENTS AND LECTURE SCHEDULE					
N.		No. of				
INO.		Hours				
	MODULE 1 (7 hours)					
1 1	Introduction: Definition of wastes and their	1				
1.1	classification,	I				
	Important quality parameters of different types of wastes.					
	Westerneitelle Generation Action Optic					
1.2	waste suitable for energy production, Solid wastes and	1				
	classification. Wastewater and their classification					
	Need of energy production from wastes, present status of					
1.3	WTE	1				
	technologies.					
14	Characterization of solid wastes: Physical,	1				
1.4	Chemical,	1				
	Proximate and ultimate analysis.					
1.5	Fusing point of ash, Lignocellulosic composition,	1				
1.0	Leaching	-				
	properties, energy content: Heating value.					
1.6	Fusing point of ash, Lignocellulosic composition,	1				
	properties energy content: Heating value					
	Characterization of wastewater. Combustion: Nature and					
1.7	types	1				
	of combustion processes – Mechanism.					
	MODULE II (7 hours)					

2.1	Energy Production from Wastes: Energy production through	1
	incineration, gasification, pyrolysis and syngas utilization.	
2.2	Energy Production from Wastes: Energy production through	1
	incineration, gasification, pyrolysis and syngas utilization.	
2.3	Incineration: principle, Incinerators parts and their types/working.	1
2.4	Environmental impact and operational issues, advantages, and disadvantages	1
0.5	Gasification: principle, advantages, and disadvantages.	1
2.5	cuomenterioni principie, un artanagoo, and abautanagoo.	T
2.6	Pyrolysis: principle, advantages, and disadvantages.	1
2.7	Syngas utilization: principle, advantages, and disadvantages.	1
	MODULE III (8 hours)	
3.1	Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers.	1
3.2	Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers.	1
3.3	Fluidized bed gasifiers – Design, construction and operation.	1
3.4	Energy production through biochemical and chemical routes	1
3.5	Energy production through anaerobic digestion, fermentation,	1
	transesterification and introduction to microbial fuel cells	
3.6	Anaerobic digestion: principle, advantages, and disadvantages;	1
3.7	Fermentation: principle, advantages, and disadvantages	1

3.8	Transesterification: principle, advantages, and disadvantages; Introduction to microbial fuel cells: principle,	1			
	advantages, and disadvantages.				
MODULE IV (7 hours)					
4.1	Definition of pyrolysis, mechanism, Types of pyrolysis.	1			
4.2	Operating conditions and end product distribution.	1			

4.3	Options for management of plastic wastes and recycling through pyrolysis.	1
4.4	Energy Production from Algae: Cultivation of algal biomass from wastewater and energy production from algae.	1
4.5	Algae cultivation: principle, advantages, and disadvantages.	1
4.6	Energy production from algae: principle, advantages, and disadvantages.	1
4.7	Applications of algae in waste management.	1
	MODULE V (7 hours)	
5.1	Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics.	1
5.2	Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics.	1
5.3	Densification of solids: principle, advantages, and disadvantages.	1
5.4	Efficiency improvement of power plants: principle, advantages, and disadvantages.	1
5.5	Energy production from waste plastics: principle, advantages, and disadvantages.	1
5.6	Energy production from waste plastics: principle, advantages, and disadvantages.	1
5.7	Applications of waste plastics in energy generation.	1

CO Assessment Sample Questions						
CO1	Imagine you are tasked with developing a waste-to-energy system for a city. How would you categorize and characterize the different types of waste to optimize energy production?					

CO2	Compare and contrast the suitability of incineration and gasification for
	different types of waste.
CO3	Describe the properties of biogas and its significance in sustainable
	bioenergy systems.
CO4	Compare the environmentalimpacts of incineration and
	digestion in waste-to-energy processes.
	Explain the potential environmental impacts associated with
CO5	inefficient waste-to-energy processes. Explain how
	adopting densification and
	improving power plant efficiency can mitigate these impacts

24CHO822		INDUSTRIAL WAS		STE		L	Т	Ρ	J	5	С	Yea Introd	r of uction		
			MANAGEMENT				3	0	0	0	3 3	3	20	24	
Preamble: This course provides students with essential skills and knowledge foreffective industrial waste management. It covers diverse topics, including types of industries, waste treatment techniques, and the impact of industrial effluents on the environment and human health. Additionally, the syllabus emphasizes cleaner production methods, pollution control, treatment technologies, and hazardous waste management practices.Prerequisite: Nil.Course Outcomes: After the completion of the course the student will be able to pollutionCO1Explain the different types of industries and their respective 															
CO2	 characteristics. CO2 Apply cleaner production principles, conduct waste audits, and implement atratagies for volume and strength reduction of industrial waste 														
CO3	CO3 Analyze and characterize specific pollution sources and attributes associated with major industries														
CO4	Imple: neutra	ment alizatio	vario equa on, ar	us t lizatio id che	reatm on, emical	ent t oxida	echn tion.	olog	ies	su	ch	6	as		
CO5	Identi	fy and	class	ify ha	zardo	us wa	ste m	nater	ial	s an	d d	lisj	ро	sal met	hods.
					CO -	PO MA	PPIN	G							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	28	PC 9) P	01	0	PO11	PO12
CO1	3	3				3	3								
CO2	3	3				3	3								
CO3	3	3				3	3								
CO4	3	3				3	3								
CO5	3	3				3	3								
				-	Assess	sment	Patte	rn							
Dla	om'a Ca	togom		Co	ntinuo	ous As Tools	sessr	nent				En	nd	Semeste	er
DIO	Bioom's Category			Tes	st1	Test	t 2	Oth too	ler ls		Examination				
Remer	nber			V	/	V	,	~	,					~	
Under	stand			V	/	V	•	V	,	✓					
Apply	ly 🗸 🖌 🖌 🗸														

Analyse			~		
Evaluate			~		
Create			~		
Mark Distribution of CIA					

Course	Attendance	Th	neory [L- T]		Total
Structure [L-T-P-J]		Assignment	Test-1	Test-2	Mark
3-0-0-0	5	15	10	10	40

Total Mark distribution								
Total Marks CIA (Marks)		ESE (Marks)	ES	E Duration				
100		40	60		3 Hrs.			
		End Semester E	xamination [ESE]: Pattern	<u>1</u>				
PATTERN PART A		PART A	PART B		ESE			
					Marks			
	10	Questions, each	2 questions will be	given				
QUESTION question		stion carries 2	mom each module, of					
	PATTERN marks		which i question she		60			
T	Ма	1 - 1 - 10 - 00	be answered. E	Lach	00			
	Mai	(2x10 = 20)	question can have	e a				
	mai	cks)	divisions	sub				
			Each question carrie	es 8				
			marks					
			Marks: $(5x8 = 40 \text{ mat})$	rks)				
			Time: 3 hours	,				
	Tota	al Marks: 20	Total Marks: [5x8 =	40				
			marks]					
		S	YLLABUS					
MODULEI	NTDO	DUCTION to WAS	TE AND DECUI ATIONS	(Q Ura				

MODULE I : INTRODUCTION to WASTE AND REGULATIONS (8 Hrs.)

Types of industries and industrial pollution - Characteristics of industrial wastes -

Population equivalent - Bioassay studies - effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health -Environmental legislations related to prevention and control of industrial effluents and hazardous wastes.

MODULE II : CLEANER PRODUCTION (7 Hrs.)

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery –

Applications.

MODULE III : POLLUTION FROM MAJOR INDUSTRIES (8 Hrs.)

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts.

MODULE IV : TREATMENT TECHNOLOGIES (8 Hrs.)

Equalization – Neutralization – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering

– Disposal.

MODULE V : HAZARDOUS WASTE MANAGEMENT (5 Hrs.)

Hazardous wastes - Physic chemical treatment – solidification – incineration –

Secure landfills.

Text books

- 1. M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi, 2000.

Reference books

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998.
- 3. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc.,

New Delhi, 1995.

4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw-Hill, 2000.

COURSE CONTENTS AND LECTURE SCHEDULE				
No.		No. of		
		Hours		
MODULE 1				
1.1	Types of industries and industrial pollution.	1		
1.2	Characteristics of industrial wastes.	1		

1.3	Population equivalent, Bioassay studies.	1
1.4	Effects of industrial effluents on various environmental	1
	components.	
1.5	Effects of industrial effluents on various environmental	1
	components.	
1.6	Environmental legislations related to prevention and control of	1
	industrial effluents and hazardous wastes.	
1.7	Environmental legislations related to prevention and control of	1
	industrial effluents and hazardous wastes.	
1.8	Environmental legislations related to prevention and control of	1
	industrial effluents and hazardous wastes.	
MODULE II		
2.1	Waste management Approach, Waste Audit.	1
2.2	Waste management Approach, Waste Audit.	1
2.3	Volume and strength reduction.	1

0.4	Material and process modification	1						
2.4		1						
2.5	Material and process modification.	1						
2.6	Recycle, reuse and byproduct recovery – Applications.	1						
2.7	Recycle, reuse and byproduct recovery – Applications.	1						
MODULE III								
3.1	Sources, characteristics.	1						
30	Waste treatment flow sheets for selected industries	1						
0.4	such as							
	Textiles, Tanneries.							
23	Waste treatment flow sheets for selected industries	1						
0.0	such as							
	Textiles, Tanneries.							
3.4	Waste treatment flow sheets for selected industries	1						
	Pharmaceuticals, Electroplating industries, Dairy,							
	Sugar, Paper, distilleries.							
35	Waste treatment flow sheets for selected industries	1						
0.0	such as							
	Steel plants, Refineries, fertilizer, thermal power plants.							
3.6	Waste treatment flow sheets for selected industries	1						
	such as							
	Steel plants, Refineries, fertilizer, thermal power plants.							
3.5	Wastewater reclamation concepts.	1						
	· · · · · · · · · · · · · · · · · · ·							
	MODULE IV							
-----	---	---	--	--	--	--	--	--
4.1	1							
4.2	Removal of suspended and dissolved organic solids.	1						
4.3	Chemical oxidation, Adsorption, Removal of dissolved	1						
4.4	Chemical oxidation, Adsorption, Removal of dissolved	1						
	inorganics							
4.5	Combined treatment of industrial and municipal wastes.	1						
4.6	Combined treatment of industrial and municipal wastes.	1						
4.7	Residue management, Dewatering, Disposal.	1						
4.8	Residue management, Dewatering, Disposal.	1						
	MODULE V							
5.1	Hazardous wastes.	1						
5.2	Physio chemical treatment.	1						
5.3	Solidification.	1						
5.4	Incineration.	1						
5.5	Secure landfills.	1						

CO Assessment sample Questions									
1	List the main types of industries contributing to pollution and their associated pollutants.								
2	Create a plan to reduce industrial waste volume and strength in a specific industry using cleaner production principles.								

3	Describe the pollutio sources and impact of the textile effluents n s industry's
4	Assess the effectiveness of equalization in wastewater treatment across
	different industrial settings.
5	List the key characteristics used to classify hazardous waste.

			ENEE	о сv т	тсн		γv	L	Т	P	J	S	C	Tu	Yea	r of
AN					D ENERGY				0	0	0	-	0	In	troat	action
24CH	0832		N	IANA	GEM	ENT		3	0	0	0	3	3		202	24
			10													
Pream resour	nble: rces,	This	S CO	urse	pro	vides	bas	ic	kno	owl	edg	e o	n v	vario	ous	energy
conve	rsion	proc	esses	and	ener	gv ma	nage	mer	nt. S	Stu	den	ts m	av s	gain	knov	wledge
on En	lergy I	Audi	ting,	Ener	gy co	nserva	ation	, Wa	aste	Н	eat	Reco	very	у, М	ainte	enance
of Ene	ergy S	yste:	ms.		0.								5			
Prerequisite: Nil																
Cours	e Out	com	es: Af	ter tł	ne cor	npleti	on of	the	cou	ırs	e th	e stu	ıden	ıt wi	ll be	able to
CO1	Idei	ntify	and e	expla	in en	ergy r	esour	ces	an	d e	ner	gy co	nve	rsio	n pro	cesses
CO2	Exp	olain	ener	gy co	nvers	sion fr	om so	olar	, oc	ear	ı an	ıd wi	nd e	ener	gy.	
CO3	Exp	olain	ener	gy co	nvers	sion fr	om b	iom	ass	an	d fi	iel ce	ells			
CO4	Exp	olain	ener	gy po	licies	, energ	gy ma	ana	gem	en	t an	d au	dit.			
CO5	App	oly tl	ne en	ergy	conse	ervatio	n me	etho	ds i	n v	vario	ous f	ield	s of	chen	nical
	pro	cess				1			- 1 1							
	ind	ustri	les, c	omm	ercia	and :		enti)U1	lain	gs.				
<u> </u>					DOF	DO6				т	\sim		10	D	-11	DO10
C01	PUI	PU2	, PU3	PU4	PU5	P00	P07	Р	00	r	-09	PU	10	P	511	PUIZ
C01						3	2			_						
C02						3	2									
CO3						3	2									
C04						3	2									
005						3	2									
					A	ssessn	nent I	Patt	ern							
					Continuous Assessment					Fnd Semester						
Blo	om's (Categ	gory	~	Test Test 2			Other			End Semester Examination					
					1	105	14	tc	tools			Examination				
Reme	mber				v	V	1		v					~		
Unde	rstand	ł			v	V	/		~					~		
Apply					v	V	/		~					~		
Analy	ze								~							
Evaluate									~							
Create								~								
					Mar	k Dist	ribut	ion	of C	ΊA						
Cou	ırse					Theory [L				[L- '	T]					
Structure Attenda [L-T-P-J]			danc	e	Assign	imen	t Test-1				Test-2		Te Ma s	Total Mark s		

3-0-0-0		5		15	10	1	10	40		
			. 1 .	r 1 1' / '	1					
Total Mark distribution										
Total Marks CIA (Marks) ESE (Marks) ESE Duration										
100	100 40 60 3 hours									
End Semester I	Exan	ination [ES	SE]: Pa	<u>attern</u>						
PATTERN	1.0	PART A			PART B	•		ESE Marks		
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)			10 Questions, each question carries 2 marks2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2						
	ma	marks) sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours								
	Total Marks: 20 Total Marks: [5x8 = 40 mark						40			
			S	SYLLABUS	S					
MODULE I : In	trodi	action to E	nergy	Conversion	n (7 Hrs.)					
Energy resou conversion pl	irces ants	s, Energy s – Conver	conv ntiona	ersion pr 1 - Therm	rocesses nal, Hydro	and d , Nucl	levice lear f	s – Energy ission , and		
non – conve	entic	nal - So	olar	-Wind-	Biomass.	Fuel	cells	- Magneto		
Hydrodynami	.cs a		ar ius	s10n.						
MODULE II : N	vaste on-ce	, Energy p onventional	energ	v sources	(7 Hrs.)					
Solar energy-	- Sc	lar thern	nal s	vstems-	Flat plate	e colle	ectors	- Focusing		
collectors- Ap	plic	ations of s	solar e	energy in	India - In	strum	nents	to measure		
solar radiation	n-P	yranomete	r – Py	rheliomet	er. Ocean	wave e	energy	conversion-		
Ocean therma	al en	ergy conv	ersior	n- Tidal e	energy cor	nversio	on- W	ind energy-		
Types of wind	mills	- Wind ele	ctric j	power ger	neration-	Wind j	power	r in India.		
MODULE III : E	Bioma	ass energy 1	resour	ces (7 Hrs.)					

Thermochemical and Biochemical methods of biomass conversion, Fuel cells- Alkaline fuel cell Phosphoric acid fuel cell- Molten carbonate fuel cell, Solid oxide

fuel cell- Solid polymer electrolyte fuel cell, Basic concepts of Microbial fuel cell.

MODULE IV : Energy management and Energy audit (7 Hrs.)

Energy Scenario – Global and Indian –Impact of Energy on economy, development and environment, Energy policies. Energy Management – Definitions and significance – Objectives – Characterizing of energy usage – Energy Management program – Energy strategies and energy planning. Energy Audit – Types and

Procedure – Optimum performance of existing facilities – Energy management

control systems – Computer applications in energy management.

MODULE V : Energy conservation (7 Hrs.)

Energy conservation – Principles – Energy conservation technologies - Cogeneration

- Waste heat recovery - Combined cycle power generation - Energy Conservation Opportunities - Electrical ECOs - Thermodynamic ECOs in chemical process industry - ECOs in residential and commercial buildings -Energy Conservation Measures.

Text books

- 1. Rao S. & Parulekar B.B., Energy Technology, Khanna Publishers.
- 2. Bansal N.K., Kleeman M. & Meliss M., Renewable Energy Sources & Conversion Tech., Tata McGraw Hill.
- 3. Goldmberg J., Johansson, Reddy A.K.N. & Williams R.H., Energy for a Sustainable World, John Wiley.
- 4. Amlan Chakrabarti, Energy Engineering and Management, Prentice Hall India, 2011. CHEMICAL ENGINEERING.
- 5. Eastop T. D. and D. R. Croft, Energy Efficiency for Engineers & Technologists, Longman, 1990.

- 1. Sukhatme S.P., Solar Energy, Tata McGraw Hill.
- 2. Mittal K.M., Non-Conventional Energy Systems, Wheeler Publications.
- 3. Venkataswarlu D.I, Chemical Technology, S. Chand.
- 4. Pandey G.N., A Text Book on Energy System and Engineering, Vikas Publishing.
- 5. Rai G.D., Non-Conventional Energy Sources, Khanna Publishers.
- 6. S.S.Thipse, Energy conservation and management, Narosa Publishing House
- 7. Albert Thumann P. E. and W. J. Younger, Handbook of Energy Audits, Fairmont Press, 2008.

Reference books

	COURSE CONTENTS AND LECTURE SCHEDULE									
No.		No. of								
		Hours								
	MODULE 1									
1.1	Energy resources, Energy conversion processes and devices	1								
1.2	Energy conversion plants – Conventional - Thermal, Hydro,	1								
	Nuclear fission									
1.3	Energy conversion plants – Conventional - Thermal, Hydro,	1								
	Nuclear fission									
1.4	Energy conversion plants – Non – conventional – Solar - Wind-	1								
	Biomass Fuel cells-									
15	Energy conversion plants -Magneto Hydrodynamics and	1								
1.5	Nuclear fusion.									
16	Energy conversion plants -Magneto Hydrodynamics and	1								
1.0	Nuclear fusion.									
1.7	Energy from waste, Energy plantation.	1								
	MODULE II									

2.1	Solar energy- Solar thermal systems- Flat plate collectors-	1
	Focusing collectors- Applications of solar energy in India.	
2.2	Solar energy- Solar thermal systems- Flat plate collectors-	1
	Focusing collectors- Applications of solar energy in India.	
2.3	Instruments to measure solar radiation- Pyranometer – Pyrheliometer	1
2.4	Ocean wave energy conversion- Ocean thermal energy conversion- Tidal energy conversion-	1
2.5	Ocean wave energy conversion- Ocean thermal energy conversion- Tidal energy conversion-	1
2.6	Wind energy- Types of windmills	1
2.7	Wind electric power generation- Wind power in India	1
	MODULE III	
3.1	Biomass energy resources- Thermochemical and Biochemical	1
	methods of biomass conversion.	
3.2	Biomass energy resources- Thermochemical and Biochemical	1
	methods of biomass conversion.	
3.3	-Fuel cells- Alkaline fuel cell- Phosphoric acid fuel cell	1

3.4	-Fuel cells- Alkaline fuel cell- Phosphoric acid fuel cell	1				
3.5	Molten carbonate fuel cell, Solid oxide fuel cell.	1				
3.6	Solid polymer electrolyte fuel cell	1				
3.7	Basic concepts of Microbial fuel cell	1				
	MODULE IV					
4.1	Energy Scenario – Global and Indian –Impact of Energy on	1				
	economy, development and environment.					
4.2	Energy Management – Definitions and significance – Objectives	1				
4.3	Characterizing of energy usage – Energy Management program	1				
4.4	energy policies. – Energy strategies and energy planning.	1				
4.5	Energy Audit – Types and Procedure – Optimum performance					
	of existing facilities					
4.6	Energy Audit – Types and Procedure – Optimum performance	1				
	of existing facilities					
4.7	Energy management control systems – Computer applications	1				
	in energy management.					
	MODULE V					
51	Energy conservation - Principles -Energy conservation	1				
0.1	technologies – Cogeneration					
5.2	Energy conservation – Principles -Energy conservation	1				
5.2	Weste heat recovery Combined evelo newer concretion	1				
5.5	waste near recovery – combined cycle power generation	T				
5.4	Energy Conservation Opportunities – Electrical ECOs	1				

5.4	Energy Conservation Opportunities – Electrical ECOs	1
5.5	Thermodynamic ECOs in chemical process industry	1
5.6	ECOs in residential and commercial buildings	1
5.7	Energy Conservation Measures	1

	CO Assessment sample Questions							
1	List out the energy conversion devices.							
2	Explain energy conversion from solar, ocean and wind energy							
3	Describe the energy conversion methods from biomass							
4	What are the energy policies employed in India?							
5	Discuss the use of cogeneration as an energy conservation tool							
6	Describe with a neat diagram on waste heat recovery in industries.							

EIGHTH SEMESTER OPEN ELECTIVE-3

24CHO813			Petroleum Resources and Petrochemicals				L	Т	Р	J	S	C	Yea Introd	er of uction		
									24							
Preamble: This course provides the concepts of petroleum refinery operations that are																
summ	summarizes preliminary primary and secondary petroleum refinery									finerv						
operations. It also explains the classification and evaluation of crude oil and																
outlines the manufacturing process of petroleum products.																
Prerequisite: Nil																
Course	Outcon	nes: A	fter tl	ne cor	npletio	n of tl	ne co	bur	se	the	stı	ide	ent	. W.	ill be al	ole to
CO1	Explai	ı var	10US]	petrol	eum re	esourc	$\frac{1}{1}$	nd	. th	eır	ori	g1r	1.			
CO2	Outline	e the	proce	ss em	ployed	ın ex	plora	atio	on a	anc	1 d1		ng	5•		
CO3	Explai	n the .	prelin	nınar	y proce	esses :	ın pe	etro	olei	mد	rei	1111	ng	•	~ ·	
CO4	Explain	1 vari	ous ti	nerma	l conv	ersion	n pro	ces	sse	S 11	ı pe	etr		un	n refini:	ng.
C05	Descri	be the	e man	ulacti	aring p		S OI	vai	r101	is j	peti	COC	ne	mı	cal pro	ducts.
<u> </u>		DOO						ג 7	DC	0		<u>)</u>		10	DO11	DO10
CO1	2	PU2	P03	P04	P05	PU0	PU	1	PC	0	PC	,9	PU	10	POII	1
C01	<u>、</u> 2	2				1	1	_			_	_				1
C02	<u> う </u>	2				1	1				-	_				1
C03	3	2				1	1 1	_			-	_				1
C04 C05	3	2				1	1 1	_			-	_				1
003	5	4			acecom	I Ient D	 atter	• n								1
				Cont	iniioiis	Asses	sme	11 nt '	Тоо	19	-					
Blo	om's Cat	egorv	. '	Те	st1	Test 2		(700 Oth	er	- End		Semester			
		-85		10	011	10012		1	too	ls	Examination			n		
Remen	nber			~		v			~						v	
Under	stand			~		V	1		~						~	
Apply				~		V	•		~						~	
Analys	e								~							
Evalua	ate								~							
Create									~							
				Ma	rk Dist	ributi	on of	CI	[A							
Course Attenda				nce		r	Theor	ту [L- 7	[1]					-	
Structure					Assie	nmer	nt	Τe	est-	1		Tes	st-2)	То	otal
[L-T	-P-J]					01				-					IVI8	πĸ
3-0	-0-0	_	5			15			10		-	1	0		s 4	0
5-0-0-0 5						-0			10			-	-		•	~

		Total Ma	ark distribution		
Total Mar	70	CIA (Marlza)	ESE (Marka)	FC	F Duration
100al Mari	19	40	60	ES	3 hr
End Semester	· Exam	tern		5 111.	
PATTERN		PART A	PART B		ESE Marks
PATTERN 1	10 (que mai Mai mai	Questions, each stion carries 2 rks rks: (2x10 =20 rks)	2 questions will given from 6 module, out of whi question should answered. H question can hav maximum of 2 divisions. Each question can 8 marks. Marks: (5x8 = 40 ma Time: 3 hours	60	
	Tota	al Marks: 20	Total [5x8 = Marks: marks]	= 40	
			!		
		SY	(LLABUS		
MODULE I : I	ntrod	uction to petroleur	n industry		
Overview of	Dil an	d Gas Resources,	Origin and formation	of cruc	de oil. Basic
Review of Pe	etroleu	um Geology, The	e Geologic Column, F	Petroleu	um Traps,
Migration a	nd				
Accumulatio	on.				
MODULE II :	Explo	ration and drilling			
Oil explorat Drilling Flui Operations.	ion a d Fui Class	nd drilling, Bas nctions, Types an sification, Compo	sic Functions and C nd Compositions, Fu osition and Evaluation	ompon ndame 1 of oil	ents of Rig, ental Drilling stock.
MODULE III :	Prelir	ninary petroleum	processing		
Preliminary	petro	oleum processing	g -Impurities in crud	le oil,	Dehydration
and desalting	ng of	crude-Electric	Desalter-, Process d	lescrip	tion, factors
affecting th	e ele	ectric desalter.	Distillation of crude	e- Pre	fractionator,
Atmospheric	c topp	ing unit, Vacuu	m distillation unit.		
MODULE IV :	Conv	ersion operations			
Thermal Co	nvers	ion process: Pro	ocess description of	Therm	al cracking,
Visbreaking,	Cok	ing (delayed co	king). Process descr	iption	of catalytic
cracking, P	rocess	s description of	Fluid Catalytic crac	king u	anıt. Process
description	of Hyo	tro cracking.			
Process desc MODULE V.	riptio Petroc	n of catalytic refo	rming.		
	I CHOC	intilicais			

Class Manu	ification of petrochemicals: light, medium as facture of	nd heavy.					
Metha	Methanol from Synthesis Gas, manufacture of formaldehvde from methanol.						
manu	facture of Low-density polyethylene(LDPE) and high	th density					
polyet	hylene(HDPE). Manufacture of Benzene, toluene, Toluene an	d Xylene by					
cataly	tic reforming. Manufacture of Isopropanol from propylene [Flow sheets					
not re	quired]						
Text b	ooks						
 Ba Dr Dr Dr M. As 	skara Rao B.K, Modern Petroleum Refinery Process, Oxford & Ram Prasad, Petroleum Refining Technology, Khanna Publis yden C. E., Outlines of Chemical Technology, East-West Pres Wells, Handbook of Petrochemicals and Processes, 2nd hgate Publishing Co., 1999.	& IBM shers s, 2008 1 Ed.,					
Refere	nce books						
1. Utt	am Ray Chaudhuri, Fundamentals of Petroleum and						
2. Dr.	Kochu Baby Manjooran S, Modern Petroleum Chemistry						
3. Jan	nes H.Garry Glenn E. Handwerk Mark J.Kaiser, Petrole	um					
Fro	Refinery Technology and Economics, CRC Press, Taylor	and					
4. I D	Mall, Petrochemical Process technology, Macmillan						
5. Nel	son W.L, Petroleum Refinery Engineering, McGraw Hill						
6. Goj Affi	bala Rao M & Sitting M, Drydens Outline of Chemical Tec liated East West Press	chnology,					
COURSE CONTENTS AND LECTURE SCHEDULE							
No		No. of					
NO.		Hours					
MODULE 1 (6 hours)							
1.1	Overview of Oil and Gas Resources	1					
1.2	Origin and formation of crude oil.	1					
1.3	Basic Review of Petroleum Geology, The Geologic Column.	1					
1.4	Petroleum Traps.	1					
1.5	Migration and Accumulation.	1					
1.6	Migration and Accumulation. 1						
MODULE II (7 hours)							
2.1	Basic Functions and Components of Rig.	1					

2.2	Drilling Fluid Functions.	1
	·	
2.3	Types and Compositions.	1
2.4	Fundamental Drilling Operations.	1
2.5	Classification and Composition of oil stock.	1
2.6	Evaluation oil stock.	1
2.7	Evaluation oil stock.	1
	MODULE III (7 hours)	
3.1	Impurities in crude oil.	1
3.2	Dehydration and desalting of crude-Electric Desalter.	1
3.3	Dehydration and desalting of crude-Electric Desalter.	1
3.4	Process description, factors affecting the electric desalter.	1
3.5	Distillation of crude- Prefractionator.	1
3.6	Distillation of crude- Atmospheric topping unit.	1
3.7	Distillation of crude- Vacuum distillation unit.	1
	MODULE IV (8 hours)	
4.1	Thermal Conversion process: Process description of Thermal cracking.	1
4.2	Process description of Visbreaking.	1
4.3	Process description of Coking (delayed coking).	1
4.4	Process description of catalytic cracking.	1

Process description of Fluid Catalytic cracking unit.

Process description of Hydro cracking.

4.5

4.6

1

1

4.7	Process description of catalytic reforming.	1
4.8	Process description of catalytic reforming.	1

MODULE V (8 hours)				
5.1	Classification of petrochemicals: light , medium and heavy.	1		
5.2	Manufacturing process of Methanol from Synthesis Gas.	1		
5.3	Manufacturing process formaldehyde from methanol.	1		
5.4	Manufacturing process of Low-density polyethylene(LDPE).	1		
5.5	Manufacturing process of high-density polyethylene(HDPE).	1		
5.6	Manufacturing process of Benzene, toluene, Toluene and Xylene by catalytic reforming.	1		
5.7	Manufacturing process of Isopropanol from propylene.	1		
5.8	Manufacturing process of Acrylonitrile by propylene ammonia air oxidation process.	1		

	CO Assessment sample Questions				
1	Explain the organic theory of formation of petroleum.				
2	Enumerate and explain the functions of drilling fluid.				
3	Explain atmospheric distillation of crude oil with a simplified flow diagram.				
4	A chemical process is used to convert straight run naphtha distilled from crude oil into high octane liquid products which are premium blending stocks for high octane gasoline. Explain the process with a neat sketch and mention the catalysts used.				
5	Explain the manufacture of Methanol from Synthesis Gas.				

24CHO823 Pollutio		on Control in Process Industries		L	Т	Р	J	s	С	Yea Introd	ar of luction				
				3	0	0	0	3	3	20	24				
3000332024Preamble: This course is an overview of the industrial waste treatment and disposal as used in the twentieth century and how it is evolving into a new conceptual field during the twenty-first century. The major topics covered are types of industrial pollution such as wastewater, hazardous waste, air pollution and its various treatment methods to abate the pollution level in the environment.Prerequisite: NilImage: NilCourse Outcomes: After the completion of the course the student will be able to strategies for pollution abatement.															
CO2	CO2 Summarize various unit operations and process for the removal of inorganic contaminations from industrial effluent														
CO3	CO3 Describe the principle and working of various biological treatment systems for stabilization of organic fractions in industrial effluent.														
CO4	CO4 Identify the sources of hazardous and toxic wastes from industries and their treatment methods.														
CO5	CO5 Illustrate air contaminants from process industries and develop strategies for zero pollution														
	_				CO - F	PO MAI	PPING	•							
CO	D PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1						PO12								
CO1	3					3	3								2
CO2	3					3	3								2
CO3	3					3	3								2
CO4	3					3	3								2
CO5	3					3	3								2
				P	lssessi	ment F	atter	n							
				Conti	nuous	Asses	smen	t Too	ols			Fn	4 9	Somoste	r
Bloom's Category			7	Tes	st1	Test	t 2	Otl too	ner ols			En	amination		
Remember			~		V	•	V	/		v					
Understand			~		V	•	V	/		v					
Apply			v		V	,	V	/					~		
Analyz	ze							V	/						
Evalu	ate							V	/						
Create							V	/							

Mark Distribution of CIA							
Course Structure	Attendance	Tł	Total				
[L-T-P-J]		Assignment	Test-1	Test-2	Mark s		
3-0-0-0	5	15	10	10	40		

Total Mark distribution					
Total Marks	CIA (Marks)	ESE (Marks)	ES	SE Duration	
100	40	60		3 Hours	
End Semester Exa	amination [ESE]: Pat	ttern			
PATTERN	PART A	PART B		ESE	
				Marks	
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	2 questions will be from each module, ou which 1 question sho be answered. E question can have maximum of 2	given ut of ould Each e a sub	60	
	, Total Marks: 20	divisions. Each question carrie marks. Marks: (5x8 = 40 mar Time: 3 hours Total Marks: [5x8 =	es 8 rks) 40		
		marks]	_		

SYLLABUS

MODULE I : Industrial environmental history and pollution abatement

Industrial environmental history, Introduction to industrial waste treatment, Theories and practices: Volume Reduction, Classification of Wastes, Conservation of Wastewater, Examination of Batch or Slug Discharges of Process Wastes.

Contaminant concentration reduction: process changes; equipment modifications; segregation of wastes; equalization of wastes; by-product recovery; proportioning

wastes; monitoring waste streams.Neutralization, Equalization and proportioning.

MODULE II : Inorganic Fraction Removal

Removal of suspended solids: Sedimentation, Floatation and Screening Removal of colloidal solids: Characteristics of Colloids, Chemical Coagulation, Coagulation by Neutralization of Electrical Charges, Removal of Colloids by Adsorption

Removal of inorganic dissolved solids: Evaporation, Dialysis, Ion Exchange, Algae,

Reverse Osmosis, Miscellaneous Methods

MODULE III : Biological Methods for Organic Fractions Removal

Removal of organic dissolved solids: lagooning in oxidation ponds; activatedsludge

treatment; modified aeration; dispersed-growth aeration; contact stabilization; high-rate aerobic treatment (total oxidation); trickling filtration; spray irrigation; wet combustion; anaerobic digestion; mechanical aeration system; deep-well injection; foam phase separation; brush aeration; subsurface disposal; Bio-Disc system.

Treatment and disposal of sludge solids: anaerobic and aerobic digestion; vacuum

filtration; elutriation; drying beds; sludge lagooning; wet combustion; atomized

suspension; drying and incineration; centrifuging; sludge barging; landfill MODULE IV : Hazardous and Toxic Waste Treatment

Joint treatment of raw industrial waste with domestic sewage.

Hazardous wastes: Effects on Environment, Classification- Ignitable Hazardous Wastes, Corrosive Hazardous Wastes- Oil Refinery Sludges Toxic Industrial Wastes-Mercury-Containing Wastes, Metal-Containing Sludge Acute Hazardous Industrial Wastes- Radioactive Wastes, Hospital Wastes.

Storage of Hazardous Industrial Wastes.

MODULE V : Air Contaminants and Zero Pollution

Removal of industrial air contaminants: Theories and Practices of Suspended and gaseous particle removal.

Procedure for Industry in Attaining Zero Pollution: environmentally balanced industrial complex (EBIC)

Associated steps must be considered

Realistic Implementation of the EBIC System

Text books

- 1. Nelson Leonard Nemerow Industrial waste treatment _ [contemporary practice and vision for the future]-Elsevier_Butterworth-Heinemann (2007)
- 2. Nicholas P. Cheremisinoff, Handbook of Water and Wastewater Treatment technologies, Butterworth-Heinemann (2001)
- 3. Frank Woodard Industrial Waste Treatment Handbook-Butterworth-Heinemann

(20	001).				
Refere	nce books				
1. Ra	o C.S., Environmental Pollution Control Engineering, New	w age			
Int	ernational Pub.				
2. Me	etcalf & Eddy, Wastewater Engineering: Treatment, Dis	posal and			
Re	use, McGraw Hill, 2005.				
3. Pea	avy, H.S., Rowe, D.R. and Tchobanoglous, G., Environmer	ntal			
En	gineering, McGraw-Hill.				
4. Ma	hajan S.P., Pollution Control in Process Industries, Tata Mo	Graw-Hill.			
	COURSE CONTENTS AND LECTURE SCHEDULE				
No.		No. of			
	Hours				
	MODULE I (9 nours)				
1.1	industrial environmental history, introduction to industrial	1			
	waste treatment				
1.2	Theories and practices: Volume Reduction, Classification of	1			
	Wastes, Conservation of Wastewater				
1.3	Examination of Batch or Slug Discharges of Process Wastes	1			
1.4	Contaminant concentration reduction: process changes	1			
1.5	equipment modifications; segregation of wastes	1			
1.0		_			

1.6	equalization of wastes, by-product recovery	1
1.7	proportioning wastes; monitoring waste streams.	1
1.8	Neutralization, Equalization and proportioning	1
1.9	Neutralization, Equalization and proportioning	1
	MODULE II (7 hours)	
2.1	Removal of suspended solids: Sedimentation, Floatation and	1
	Screening	

	Removal of colloidal solids: Characteristics of	
2.2	Colloids, Chemical Coagulation,	1
	Coagulation by Neutralization of	
	Electrical Charges	
2.3	Removal of Colloids by Adsorption	1
2.4	Removal of inorganic dissolved solids: Evaporation	1
2.5	Dialysis, Ion Exchange	1
2.6	Algae, Reverse Osmosis, Miscellaneous Methods	1
2.7	Algae, Reverse Osmosis, Miscellaneous Methods	1
	MODULE III (9 hours)	
3.1	Removal of organic dissolved solids: lagooning in oxidation ponds	1
3.2	activated-sludge treatment; modified aeration; dispersed-growth aeration; contact stabilization;	1
3.3	high-rate aerobic treatment (total oxidation); trickling filtration; spray irrigation; wet combustion	1
3.4	anaerobic digestion; mechanical aeration system	1
3.5	deep-well injection; foam phase separation; brush aeration; subsurface disposal: Bio-Disc system.	1
3.6	Treatment and disposal of sludge solids: anaerobic and aerobic digestion	1
3.7	vacuum filtration; elutriation; drying beds	1
3.8	sludge lagoon Ing; wet combustion; atomized suspension; drying and incineration	1
3.9	centrifuging; sludge barging; landfill	1
	MODULE IV (6 hours)	

4.1	Joint treatment of raw industrial waste with domestic sewage.	1
4.2	Hazardous wastes: Effects on Environment, Classification- Ignitable Hazardous Wastes	1

4.3	Corrosive Hazardous Wastes- Oil Refinery Sludges	1
4.4	Toxic Industrial Wastes-Mercury-Containing Wastes, Metal-Containing Sludge	1
4.5	Acute Hazardous Industrial Wastes- Radioactive Wastes, Hospital Wastes	1
4.6	Storage of Hazardous Industrial Wastes	1
	MODULE V (5 hours)	·
5.1	Removal of industrial air contaminants: Theories and Practices of Suspended Particle and gaseous pollutant Removal.	1
5.2	Theories and Practices of Suspended Particle and gaseous pollutant Removal.	1
5.3	Procedure for Industry in Attaining Zero Pollution: environmentally balanced industrial complex (EBIC)	1
5.4	Associated steps must be considered	1
5.5	Realistic Implementation of the EBIC System	1

	CO Assessment sample Questions
1	Describe the methods for reducing the wastewater generation in
T	process
	industries.
2	With a neat sketch, explain the principle and working of
4	multiple effect
	evaporator in effluent treatment.
2	Explain the mechanism of sludge stabilization using two stage
5	anaerobic
	sludge digester.
	List the classification of hazardous wastes with examples.
4	Describe the standard methods for the disposal of hazardous
	wastes from industrial
	sources.
	Describe the steps associated to attain environmentally balanced
5	industrial
	complex for process industries.

								L	Т	Ρ	J	S	C	Yea	ar of
24CHC	0833	HYD	ROGE	N ENE	RGY			2	0	0	0	2	2	Introd	uction
		TECH	HNOL	OGY				3	0	0	0	3	3	20	24
Pream	ble:	The	cours	e will	comp	oreher	nsively	cc	over	a	ll t	he	as	spects	of the
hydrog	gen														
energy	value	chain	inclu	ding pi	roduct	ion m	ethod	s, st	ora	ige,	ut	iliz	atio	on in va	arious
sectors	sectors, associated energy conversion devices, sensing and safety. The course														
will pro	ovide a	a broad	d kno	wledge	of hy	droger	n as a	n er	ierg	gy c	arr	ier	•		
Prerequ	uisite: l	Nil	• 6	. 4		6 .	-				-				
Course	Outco	omes:	After	the cor	npleti	on of t	he co	urse	e th	e st	tud	en	t w:	ill be a	ble to
CO1	Expla	ain the	e basio	c natu	re of h	ydrog	en as	a fi	ıel						
CO2	Expla	ain the	e vario	ous hy	droger	ı prod	luctio	n pr	oce	esse	es				
CO3	Expla	ain the	e vario	ous me	thods	of sto	rage o	of hy	dro	ogei	n				
CO4	Expla	ain the	e ther	modyn	amics	of fue	el cell	s							
					CO - F	PO MA	PPING								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	28	PC)9	PO	10	PO11	PO12
CO1	3	3	3												
CO2	3	3													
CO3	3	3	3												
CO4	3	3	3												
				1	Assessi	ment F	Pattern	n							
				Conti	nuous	Asses	sment	: Toc	ols			F *	- 4 6	Somoot	
Bloc	om's Ca	ategor	y	Test1		Test2 (Otł	ner	1	End Semester Examination		n I		
			ta		toc	ols		Examination		11					
Remem	ıber			~		V	/	V	/		V				
Understand			~		V	/	V	/		V					
Apply			~		V	/	V	/					~		
Analyse							V	/							
Evaluate						V	/								
Create								V	/						
	Mark Distribution of CIA														

Course	Attendance	T	heory [L- T]		Total
Structure [L-T-P-J]		Assignment	Test-1	Test-2	Mark
3-0-0-0	5	15	10	10	40

Total Mark distribution				
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration	
100	40	60	3 HOURS	

End	Semester	Examination	[ESE]:	Pattern

PATTERN	PART A	PART B	ESE Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 =20 marks)	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours 	60
	Total Marks: 20	Total Marks [5x8 = 40 marks:]	

SYLLABUS

MODULE I: Introduction to hydrogen energy systems (7 hours)

Properties of hydrogen as fuel, Hydrogen pathways introduction-current uses, general introduction to infrastructure requirement for hydrogen production,

storage, dispensing and utilization, and hydrogen production plants MODULE II : Hydrogen production processes (7 hours)

Thermal-Steam reformation, thermo chemical water splitting, gasification-pyrolysis,

nuclear thermal catalytic and partial oxidation methods.

Electrochemical Electrolysis, photo electro chemical method.

MODULE III : Hydrogen storage and safety (8 hours)

Physical and chemical properties, general storage methods, compressed storage-composite cylinders, metal hydride storage, carbon based materials for hydrogen storage. Hydrogen safety aspects, backfire, preignition, hydrogen

emission NOx control techniques and strategies, Hydrogen powered vehicles MODULE IV : Fuel cells (8 hours)

Basic principle of direct energy conversion using fuel cells; Thermodynamics of fuel

cells Fuel cell types: AFC, PEMFC, MCFC, SOFC, Microbial Fuel cell MODULE V : Applications of fuel cells (6 hours)

Fuel	Fuel cell usage for domestic power systems, large scale power					
auton	automobile, space applications, economic and environmental analysis on					
usage	of fuel cell, future trends of fuel cells	5				
Text b 1. E	 Text books 1. EG&G Technical Services, Fuel Cell Handbook, Morgantown, West Virginia, USA , 2004 					
2. F	Peter Hoffman, Tomorrow's Energy: Hydrogen, Fuel cells and prospects for a cleaner planet, MIT Press, Cambridge, London 2001	the n, England ,				
3. C F	Gupta, R. B., Hydrogen Fuel: Production, Transport and Press, Taylor & Francis Group, 2009.	Storage, CRC				
4. A Gerr	agata Godula-Jopek, Hydrogen Production by Electrolysis, V nany, 1015	Wiley-VCH,				
Referent 1. (T	nce books Chris Rayment and Scott Sherwin,, Introduction to Fuel Cell Yechnology, Notre Dame, U.S.A , 2003					
	COURSE CONTENTS AND LECTURE SCHEDULE					
No.		No. of Hours				
MODULE 1						
1.1	Introduction of hydrogen energy systems	1				
1.2	Properties of hydrogen as fuel	1				
1.3	Hydrogen pathways introduction-current uses	1				
1.4	general introduction to infrastructure requirement for hydrogen production	1				
1.5	storage, dispensing and utilization	1				
1.6	hydrogen production plants	1				
1.7	hydrogen production plants	1				
	MODULE II					
2.1	Thermal-Steam reformation	1				
2.2	thermo chemical water splitting	1				
2.3	gasification-pyrolysis	1				

2.4	nuclear thermal catalytic	1	
2.5	partial oxidation methods	1	
2.6	Electrochemical Electrolysis, photo electro chemical method	1	
2.7	Electrochemical Electrolysis, photo electro chemical method	1	
MODULE III			
3.1	Physical and chemical properties	1	
3.2	general storage methods	1	

3.3	compressed storage-composite cylinders	1	
3.4	metal hydride storage, carbon based materials for hydrogen storage	1	
3.5	metal hydride storage, carbon based materials for hydrogen storage	1	
3.6	Hydrogen safety aspects, backfire, pre-ignition	1	
3.7	hydrogen emission NOx control techniques and strategies, Hydrogen powered vehicles	1	
3.8	hydrogen emission NOx control techniques and strategies, Hydrogen powered vehicles	1	
	MODULE IV		
4.1	Basic principle of direct energy conversion using fuel cells	1	
4.2	Thermodynamics of fuel cells Fuel cell types: AFC	1	
4.3	Thermodynamics of fuel cells Fuel cell types: AFC	1	
4.4	PEMFC	1	
4.5	PEMFC	1	
4.6	MCFC	1	
4.7	SOFC	1	

4.8	Microbial Fuel cell	1		
	MODULE V			
5.1	Fuel cell usage for domestic power systems	1		
5.2	large scale power generation	1		
5.3	automobile, space applications	1		
5.4	automobile, space applications	1		
5.5	economic and environmental analysis on usage of fuel cell	1		
5.6	future trends of fuel cells	1		

	CO Assessment Sample Questions
1	Explain the properties of hydrogen as a fuel.
2	Explain partial oxidation method of hydrogen production.
3	"Ammonia can serve as a clean hydrogen energy storage medium". Justify the statement.
4	Explain the working of SOFC.

EIGHTH SEMESTER HONOUR

								L	Т	Р	J	S	С	Yea	ar of
24CI	HH809)	PR	ROJECT (HONOURS)									Introd	luction	
								0	0	0	4	0	4	20	24
Preamble: The objective of Project is to enable the s								dent	to ta	ake	up	an	inv	estigativ	ve
study	study in the broad field of Engineering, either fully theoretical/practical or involving								volving						
both theoretical and practical work to be assigned by the Department on a group of															
three/four students, under the guidance of a supervisor.															
Prerequisite: Nil															
Course Outcomes: After the completion of the course the student will be able to															
CO1	Identify and synthesize problems and propose solutions to them.														
CO2	Prepare a work plan and liaison with the team in completing as per schedule.														
CO3	Validate the above solutions by theoretical calculations and through														
	experiments.														
CO4	Write technical reports and develop proper communication skills.														
CO5	Present the data and defend ideas.														
CO - PO MAPPING															
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PC	08	PC)9	PO	10	PO11	PO12
CO1	3	3	3	3	-	-	-	-	-	3	5	3		-	2
CO2	3	-	-	3	-	-	-	3	3	-		3		3	-
CO3	3	3	3	3	3	-	-	-	-	-		3		-	-
CO4	-	-	-	-	3	-	-	3	3	3	;	3		-	1
CO5	3	3	3	3 3 - 3 3					1						
Assessment Pattern															
Placm's Catagory Continuous assessment tool							tool	s							
Diooni s Category				Evaluation 1			Evaluation 2			Evaluation 3					
Remember															
Understand				✓			v			✓					
Apply				v			v			v					
Analyse				v			 ✓ 			V					
Evaluate															
Create															
Mark Distribution of CIA															

Course Structure [L-T-P-J]	Project guide	Interim Evaluation	Draft Report	Final Report	Final Evaluation	Total Marks
0-0-0-4	25	25	5	10	35	100

Total Mark distribution						
Total Marks	CIA (Marks)					
100	100					
General guidelines						

Assessment Pattern

The End Semester Evaluation (ESE) will be conducted as an internal evaluation based on the product, the report and a viva- voce examination, conducted by a 3-member committee appointed by Head of the Department comprising HoD or a senior faculty member, academic coordinator for that program and project guide/coordinator. The Committee will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, working knowledge and involvement.

The Continuous Internal Evaluation (CIE) is conducted by evaluating the progress of the mini project through a minimum of TWO reviews. At the time of the 1st review, students are supposed to propose a new system/design/idea, after completing a thorough literature study of the existing systms under their chosen area. In the 2nd review students are expected to highlight the implementation details of the proposed solution. The review committee should assess the extent to which the implementation reflects the proposed design. A well coded, assembled and completely functional product is the expected output at this stage. The final CIE mark is the average of 1st and 2nd review marks.

A zeroth review may be conducted before the beginning of the project to give a chance for the students to present their area of interest or problem domain or conduct open brainstorming sessions for innovative ideas. Zeroth review will not be a part of the CIE evaluation process